
AFIT/GCS/ENG/99M-06

PARALLEL DATA MINING WITH THE
MESSAGE PASSING INTERFACE STANDARD
ON CLUSTERS OF PERSONAL COMPUTERS

THESIS

Lonnie P Hammack
Captain, USAF

AFIT/GCS/ENG/99M-06

Approved for public release; distribution unlimited.

Mm @MIHT msHMmm a 19990409 048

REPORT DOCUMENTATION PAGE Form Approved
OMBNo. 07040188

Public reporting burden for tbis collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-01881, Washington, DC 20503.

1. AGENCY USE ONLY /Leave blank/ 2. REPORT DATE

March 1999

3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Parallel Data Mining with the Message Passing Interface Standard on Clusters of
Personal Computers

6. AUTHOR(S)

Lonnie P. Hammack, Capt, USAF

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
2950 P Street
WPAFBOH 45433-4514

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/99M-06

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Dr Robert L. Ewing
AFRL/IFTA
WPAFB, OH 45433-7334
DSN: 785-7438 x3592 COMM: 937-255-7438 x3592

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

Thesis Advisor: Dr. Gary B. Lamont, DSN: 785-3625 COMM: 937-255-3625, E-mail: Gary.Lamont@afit.af.mil

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited
12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)

Piles of personal computers (PoPCs) have begun to challenge the performance of the traditional Massively Parallel
Processors (MPPs) and the less traditional networks of workstations (NOWs) as platforms for parallel computing. Large
clusters of PCs have reached and at times exceeded the performance of modern MPPs at a fraction of the cost. Built with
commodity components, these clusters can be constructed for about half the cost of a comparable NOW. The primary
competing operating systems (O/S) in use on PoPCs are Linux and Windows NT. This thesis investigation compares the
performance of an NT cluster with that of a Linux cluster, a NOW, and an MPP. A comparison of the MPI tools available
for NT is also accomplished. These comparisons are made using the Pallas benchmark suite for MPI and a parallel data
mining algorithm. This data mining technique, known as the Genetic Rule and Classifier Construction Environment
(GRaCCE), uses a genetic algorithm to mine decision rules from data. Results from experimentation and statistical analysis
have produced three important conclusions. First, NT clusters are viable, cost effective alternatives to Linux clusters,
NOWs, and MPPs for parallel computing. Second, the two primary communication libraries currently available for
NT-PaTENT MPI and MPI/Pro-are statistically equivalent in performance. Third, the parallel GRaCCE algorithm is
capable of relatively good speedup and efficiency, even for significantly unbalanced processor workloads, if the effects of
first loop iteration caching are ignored.

14. SUBJECT TERMS

Parallel computing, Message Passing Interface (MPI), Piles of Personal Computers (PoPC),
Massively Parallel Processors (MPP), Networks of Workstations (NOW), data mining, Genetic
Algorithms (GA)

15. NUMBER OF PAGES

135
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

The views expressed in this thesis are those of the author and do not necessarily reflect
the official policy or position of the Department of Defense or the U. S. Government.

11

AFIT/GCS/ENG/99M-06

PARALLEL DATA MINING WITH
THE MESSAGE PASSING INTERFACE

STANDARD ON CLUSTERS OF
PERSONAL COMPUTERS

THESIS

Presented to the faculty of the Graduate School of Engineering

Of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

Lonnie P Hammack, B. S.

Captain, USAF

March, 1999

Approved for public release, distribution unlimited.

HI

AFIT/GCS/ENG/99M-06

PARALLEL DATA MINING WITH THE
MESSAGE PASSING INTERFACE STANDARD ON

CLUSTERS OF PERSONAL COMPUTERS

THESIS

Lonnie P Hammack

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Computer Engineering

aßu^
Dr. Gar/B. Lamonr^^ Major Richard A. Raines
Chairman Member

IV

Acknowledgments

This thesis effort would not have been possible without the tremendous support of

my family, friends, advisors, and colleagues. I'd like to start by thanking my wife,

Jennifer, and our two daughters, Christy and Tammy, for their encouragement and

understanding. I promise to try over the next year to make up for some of the long hours

I spent away from home during this time at AFIT.

Next, I'd like to thank my thesis advisor, Dr. Gary Lamont, for his ceaseless

patience in assisting me to grasp the concepts of parallel and distributed computing. His

noticeable interest in and astounding comprehension of this field of study made my task

much easier. I'd also like to thank my academic advisor and committee member, Major

Rick Raines, for his contributions to this effort. His classes were always enjoyable and

enlightening. My fellow companions in the parallel-computing group also deserve

special thanks for all of their assistance to me during this effort. Thanks also to Major

Robert Marmelstein who provided the algorithm, which I used and was always willing to

answer the many questions I had in working with his code.

Finally, I'd like to thank God with whom I have spent many hours in conversation

concerning this effort. He provided the peace and assurance when things looked gloomy

and I didn't know how to proceed.

Table of Contents

Acknowledgments v

Table of Contents vi

Table of Figures xii

List of Tables xiv

Table of Equations xv

Abstract xvi

1 Introduction 1

1.1 From Supercomputers to Clusters of PCs 1

1.2 AFIT Bimodal Cluster (ABC) of NT/Linux PCs 3

1.3 Data Mining Using Genetic Algorithms 4

1.4 Research Overview and Summary 4

1.5 Outline of Chapters II through V 6

2 Background 7

2.1 Massively Parallel Processors (MPPs) 7

2.2 Networks of Workstations (NOWs) 10

2.3 Piles of PCs (PoPCs) 12

2.3.1 Beowulf- The first PC clusters 12

2.3.2 NT Clusters 13

vi

2.3.3 MPI on NT 14

2.3.3.1 WinMPICH and MPI/PRO 14

2.3.3.2 WMPI and PaTENT MPI 4.0 15

2.3.3.3 HPVM 15

2.4 AFIT Bimodal Cluster (ABC) 16

2.4.1 ABC's Hardware Configuration 16

2.4.2 ABC's Interconnection Network 17

2.4.3 O/S and Software Tools on ABC 18

2.5 Data Mining 19

2.5.1 Introduction 19

2.5.2 Description 20

2.5.3 Decision Trees 21

2.5.3.1 CART 22

2.5.3.2 C4.5 22

2.5.4 Neural Networks 23

2.5.5 Linear Discriminants 24

2.5.6 Nearest Neighbor Classifiers 25

2.5.7 Genetic Algorithms 26

2.5.8 GRaCCE 27

2.6 Summary 28

3 GRaCCE Algorithm Design/Decomposition 30

3.1 Overview 30

3.2 Problem Domain 30

Vll

3.3 Algorithm Domain 31

3.3.1 Data Decomposition 33

3.3.2 Task Decomposition 35

3.3.3 Task Scheduling 39

3.3.3.1 Scheduling by Class 40

3.3.3.2 Scheduling by Boundary Point 41

3.3.4 Load Balancing 42

3.4 Parallel GRaCCE (cGRaCCE) Algorithm 44

3.5 Predicted Performance 45

3.6 Summary 45

4 Methodology and Design of Experiments 46

4.1 Measuring Performance 46

4.1.1 Speedup 47

4.1.2 Efficiency 48

4.1.3 Isoefficiency 49

4.2 Experiments and Benchmarks 49

4.2.1 ABC-Linux vs. ABC-NT 50

4.2.2 Benchmarking MPI Tools 51

4.2.3 Parallel GRaCCE Performance 51

4.3 Statistical Validation 52

5 Analysis of Results 54

5.1 Overview 54

5.2 Linux Cluster vs. NT Cluster 54

vm

5.2.1 Factors Affecting System Performance 55

5.2.2 Compiler Optimizations 57

5.2.3 Pallas MPI Benchmarks (PMB) 59

5.2.3.1 PingPong 60

5.2.3.1.1 Startup Time 60

5.2.3.1.2 Channel Throughput 62

5.2.3.2 Sendrecv 64

5.2.3.3 Beast 65

5.2.4 Run Time Performance of cGRaCCE 66

5.2.5 Price-Performance Evaluation 70

5.2.6 Conclusions - Linux vs. NT Cluster 71

5.3 Performance of MPI Tools on NT 73

5.3.1 Pallas Benchmarks 73

5.3.1.1 PingPong 74

5.3.1.1.1 Startup Time 74

5.3.1.1.2 Channel Throughput 75

5.3.1.2 Sendrecv 75

5.3.1.3 Beast 76

5.3.2 Run Time Performance of cGRaCCE 77

5.3.3 Conclusions - Performance of MPI Tools for NT 79

5.4 Parallel GRaCCE (cGRaCCE) Performance 79

5.4.1 cGRaCCE Complexity 80

5.4.2 Speedup 82

IX

5.4.2.1 Load Balance 83

5.4.2.2 Cache Advantage 85

5.4.2.3 Communication Overhead 88

5.4.3 Efficiency 89

5.4.4 Isoefficiency 90

5.4.5 Statistical Validation 91

5.4.6 Conclusions - cGRaCCE Performance 92

6 Conclusions/Recommendations 94

6.1 Review i 94

6.2 Summary 94

6.3 Contributions 95

6.4 Proposals for Future Research 97

Appendix A: General Overview of Parallel Processing 99

A.l Introduction 99

A.l.l Flynn's Taxonomy 100

A.l.2 Shared Memory vs. Message-Passing Architectures 101

A.1.3 Interconnection Networks 102

A.l.3.1 Dynamic Interconnection Networks 102

A.l.3.2 Static Interconnection Networks 105

A.l.3.3 Cost/Performance Metrics 108

Appendix B: AFIT Bimodal Cluster 110

Appendix C: Analysis of Variance Tables Ill

x

Bibliography 115

VITA 120

XI

Table of Figures

Figure 1: Binary Decision Tree 21

Figure 2: Neural Network Perceptron 23

Figure 3: Idealized Class Separation by partition 24

Figure 4: Pseudocode for Goldberg's Simple Genetic Algorithm 27

Figure 5: Data Before and After Partitioning 28

Figure 6: Redundant Cluster Identification 32

Figure 7: Data Decomposition of GRaCCE Algorithm 33

Figure 8: Parallel Data Decomposition of GRaCCE Algorithm 34

Figure 9: Parallel decomposition of GA-based search 35

Figure 10: Pseudocode for Serial GRaCCE algorithm 37

Figure 11: Pseudocode for Parallel GRaCCE algorithm 39

Figure 12: Processors in a Hypercube 41

Figure 13: Pseudocode for final cGRaCCE code 44

Figure 14: Effects of Compiler Optimizations on cGRaCCE Performance 58

Figure 15: Message Startup Time on ABC, AFIT NOW, and SP2 61

Figure 16: Startup Time for Linux and NT cluster 62

Figure 17: Channel Throughput - PingPong Benchmark 62

Figure 18: Channel Throughput for ABC-NT and ABC-Linux 64

Figure 19: Measured throughput for Sendrecv Benchmark 65

Figure 20: Timing for Beast benchmark 66

Figure 21: Run Time performance of cGRaCCE 69

Xll

Figure 22: Startup Time for PingPong Benchmark 74

Figure 23: Channel Throughput for PingPong Benchmark 75

Figure 24: Channel Throughput for Sendrecv Benchmark 76

Figure 25: Timing for Beast Benchmark 77

Figure 26: Run Time Performance of cGRaCCE with MPI/Pro and PaTENT 77

Figure 27: Speedup for Checker and TH513 data sets 83

Figure 28: Load balance of cGRaCCE algorithm 84

Figure 29: Cache advantage for TH513 data set 85

Figure 30: Cache advantage ignored for TH513 data set 87

Figure 31: Effects of communication overhead on speedup 89

Figure 32: cGRaCCE Efficiency with Checker and TH513 data sets 89

Figure 33: Predicted Efficiency with cache advantage ignored 90

Figure 34: Layout of a typical SIMD and MIMD architecture 101

Figure 35: Two Primary Architectures for MIMD Computers 102

Figure 36: Dynamic Interconnection Networks 103

Figure 37: Omega Interconnection Network (used in IBM SP2) 104

Figure 38: Static ICNs - Completely-connected, star, linear array, & ring 105

Figure 39: Static Interconnection Networks - Tree & 2D Mesh 106

Figure 40: Static Interconnection Networks -1-, 2-, & 3-dimensionsal hypercubes 107

Figure 41: Diagram of AFIT Bimodal Cluster (ABC) 110

Figure 42: Plot of Sample distribution using SAS/JMP and Excel Ill

xm

List of Tables

Table 1: MPI software for Windows NT 14

Table 2: Tasks (boundary points) 41

Table 3: Scheduled Tasks for Hypercube 41

Table 4: Scheduling using Duplication 42

Table 5: Parameters for Experiment III 52

Table 6: System Parameters for ABC, NOW, and SP2 56

Table 7: C++Compilers and Optimizations used 57

Table 8: Measured statistics for Checker and TH513 data sets 67

Table 9: Performance data for test systems 67

Table 10: Price-performance for ABC, AFIT NOW, & SP2 71

Table 11: ANOVA values for ABC-NT with checker data set 78

Table 12: ANOVA values for ABC-NT, TH513 data set, 3-processors 79

Table 13: Estimated number of computations performed by cGRaCCE 81

Table 14: Actual number of computations performed by cGRaCCE 82

Table 15: Number of bpts and bnds evaluated per class 84

Table 16: Size of data passed for each data set 88

Table 17: Size of Level 1 cache 88

Table 18 : Metrics for Static Interconnection Networks 109

Table 19: ANOVA values for TH513 data set on all platforms 113

Table 20: ANOVA values for Checker data set on all platforms 114

xiv

Table of Equations

Linear Discriminants 25

Speedup 47

Efficiency 48

Isoefficiency 49

PingPong Channel Throughput 60

Throughput - Sendrecv 64

cGRaCCE Complexity 81

xv

Abstract

Piles of personal computers (PoPCs) have begun to challenge the performance of

the traditional Massively Parallel Processors (MPPs) and the less traditional networks of

workstations (NOWs) as platforms for parallel computing. Large clusters of PCs have

reached and at times exceeded the performance of modern MPPs at a fraction of the cost.

Built with commodity components, these clusters can be constructed for about half the

cost of a comparable NOW. The primary competing operating systems (O/S) in use on

PoPCs are Linux and Windows NT.

This thesis investigation compares the performance of an NT cluster with that of a

Linux cluster, a NOW, and an MPP. A comparison of the MPI tools available for NT is

also accomplished. These comparisons are made using the Pallas benchmark suite for

MPI and a parallel data mining algorithm. This data mining technique, known as the

Genetic Rule and Classifier Construction Environment (GRaCCE), uses a genetic

algorithm to mine decision rules from data.

Results from experimentation and statistical analysis have produced three

important conclusions. First, NT clusters are viable, cost effective alternatives to Linux

clusters, NOWs, and MPPs for parallel computing. Second, the two primary

communication libraries currently available for NT—PaTENT MPI and MPI/Pro—are

statistically equivalent in performance. Third, the parallel GRaCCE algorithm is capable

of relatively good speedup and efficiency, even for significantly unbalanced processor

workloads, if the effects of first loop iteration caching are ignored.

XVI

/ Introduction

1.1 From Supercomputers to Clusters of PCs

Starting with the very first computers, the demand for computing power has

steadily outpaced the increase in computer performance. To meet this demand,

supercomputer manufacturers began to take advantage of the power of multiple

processors simultaneously solving the same problem. [Kumar94] This move to parallel

computing began with the replacement of the typical single high-speed, high-cost,

proprietary processor in supercomputers with a series of lower cost microprocessors

connected by a high-speed interconnection network. The speed of these microprocessors

over the last decade has typically been within one order of magnitude of the speed of the

fastest serial computers.[Kumar94] This change has allowed supercomputer manufacturers

to increase performance while maintaining or even reducing costs. Even so, the times

required to architect and build these massively parallel processors (MPPs) meant that by

the time they reached the consumer, the microprocessors were much slower than those

currently being sold. To take advantage of this rapid increase in microprocessor speed,

many users have turned to Networks of Workstations (NOW) for running parallel

applications. Two important advances that made this possible were the increased

performance of interconnection networks and the development of standardized tools and

utilities for parallelizing applications. Interconnection networks with speeds of up to 100

megabits per second (Mbps) are readily available at commodity prices and gigabit speed

networks, [GEA] which are available now at a much higher cost, are rapidly becoming

affordable. For instance, gigabit Ethernet switches can currently be purchased for

approximately $1000/port. Similarly equipped Fast Ethernet switches (100 Mbps) sell

for roughly one-tenth of this cost or about $100/port.[Provant]

One example of a standard communication tool now available for parallel

processing is the Message Passing Interface (MPI). [MPI] A broad base of commercial

vendors, academia, and users worked together to develop this standard. Implementations

of the MPI standard have resulted in the availability of a number of instantiations. One

of the more popular is MPICH. [Gr°PP96] Developed by Argonne National Labs (ANL) in

conjunction with Mississippi State University (MSU), MPICH is a portable version of

MPI which works on most UNIX type operating systems.

Using MPICH, NOWs have achieved significant performance improvements over

MPPs for such applications as Fast-Fourier Transforms (FFT) at a fraction of the cost.

[Gindha97] [AnderS95] Eyen so> ugers haye begUn t0 i00^ at even more inexpensive ways of

achieving the same performance. One way this goal has been accomplished is by using

commodity personal computers (PCs) in what is commonly referred to as Piles of PCs

(PoPCs) or Clusters of PCs (COPs). Since the idea behind using PoPCs is to reduce

costs, a common operating system in use on these systems is Linux,[Linuxl a UNIX-like

operating system freely available, including source code, from the Internet.

A more recent move in PoPC research has been to make use of PCs running the

Windows NT operating system. [Wmdows] One of the primary factors contributing to the

use of clusters of NT workstations for parallel computing is the growing number of these

machines in use, both in government, academic, and commercial organizations. This

growth means that these machines are readily available for research and potential

harnessing of idle processor cycles, known as cycle harvesting. Another driving force

behind NT PoPCs is the development of tools for parallelizing applications that execute

under the Windows environment. This development has been primarily focused on MPI.

[MPT] current research developments have lead to several versions of MPI for NT, which

are discussed in detail in Chapter 2.

1.2 AFIT Bimodal Cluster (ABC) of NT/Linux PCs

To facilitate this research effort, a cluster of PCs has been installed in the AFIT

Parallel lab. This cluster, known as the AFIT Bimodal Cluster (ABC), currently consists

of a 200 MHz Pentium PC and four 333 MHz, six 400 MHz, and one 450 MHz Pentium

II PCs connected via a 100 Mbps switched Ethernet network. These machines are dual-

bootable under either Linux (Red Hat 5.0) or Windows NT (version 4.0). To avoid

confusion, the name ABC-NT is used to refer to the ABC cluster running under NT. An

Ethernet switch provides direct connections between every CPU. The research outlined

in this thesis utilizes the ABC-NT and ABC-Linux cluster and compares the different

MPI versions available for NT described in Section 2.3.3.

Since a comprehensive review of all possible parallel applications is not feasible,

this thesis effort focuses on a single area of importance to the Air Force - Data Mining.

The amount of data collected by the Air Force continues to grow at exponential rates.

[USAFFS95] rp^^ growtri j^g highlighted the need for effective means of partitioning this

collected data into meaningful subsets for analysis. Current research in the field of data

mining is providing some very useful techniques for accomplishing this goal. One such

technique is discussed in the next section.

1.3 Data Mining Using Genetic Algorithms

Data mining is "the automated search for interesting and useful relationships

between attributes in databases."[Marmel98] The field of data mining is within itself very

broad. Researchers have developed many techniques to "mine" information from data

including decision trees, neural networks, linear discriminants, genetic algorithms, and

nearest-neighbor classifiers. [Weiss91] The primary application used for testing and

experimentation in this thesis effort is based on a data mining algorithm developed by

AFIT Ph.D. candidate Maj. Robert Marmelstein. This algorithm, known as the Genetic

Rule and Classifier Construction Environment (GRaCCE), uses features of each of the

aforementioned data mining techniques. Chapter 3 provides a detailed description of the

original and modified GRaCCE algorithm.

1.4 Research Overview and Summary

Maj. Marmelstein developed the original GRaCCE code using MatLab. [MatLab]

This algorithm produces a less complex rule set than traditional decision tree algorithms

such as CART rBriema84l and C4.5, [Quinla93] with about the same accuracy; however, the

performance of the original GRaCCE algorithm is much slower. One of the goals of this

thesis effort is to convert this code to C++ and parallelize it using MPI. This code is then

used to determine if parallelization of the algorithm eliminates the performance

4

disadvantage as expected. The resulting code, along with the Pallas MPI benchmarks

described in Chapter 4, is also used to evaluate the performance of the ABC-NT and

Linux clusters and the major MPI implementations for NT currently available. To

summarize, the objectives of this research are as follows:

1) Compare the performance of an NT PoPC with that of a Linux PoPC.

2) Compare the performance of the various MPI implementations for NT (MPII Pro &

POTENT MPi).

3) Analyze the performance of a parallel C++ version of the GRaCCE algorithm.

These objectives are accomplished by performing a series of experiments and

analyzing the collected data. The results documented in this thesis are written using the

following assumptions about the reader. It is assumed:

1) That the reader has at least a general knowledge of the primary areas of the Computer

Science/Computer Engineering discipline to include:

a) Computer architectures

b) Computer operating systems

c) Parallel and distributed computing

d) General algorithms and algorithm complexity

e) Computer programming

2) That the reader has general knowledge of probability and statistics.

1.5 Outline of Chapters II through V

Chapter 2 provides the background on the emergence of PoPCs, the use of NT on

PoPCs, and the tools available for use with these systems. Furthermore, an examination

of some of the existing NT clusters is provided. This chapter also provides detailed

information on data mining techniques and genetic algorithms. In Chapter 3, the

algorithm domain for GRaCCE is discussed, as well as, various task decomposition and

load balancing techniques. Chapter 4 lays out the methodology and experiment design

for this research. Chapter 5 provides an analysis of the results of this thesis effort. This

chapter is divided into three sections. First, a comparison of the performance of the

ABC-NT PoPC with other parallel systems is discussed. Special attention is given to the

comparison between NT and Linux PoPCs. Secondly, a comparison is made between the

various MPI NT implementations. The advantages and disadvantages of each, as

indicated by scientific experimentation, are discussed. Lastly, the performance of the

parallel GRaCCE algorithm is compared to that of the serial version and the original

MatLab code. Chapter 6 summarizes the results that were discussed in Chapter 5 and

presents conclusions on the suitability of NT PoPCs for parallel computing. The various

contributions provided by this research, as well as, recommendations for future research

are also included in Chapter 6.

2 Background

This chapter provides limited background information on parallel systems. This

information is necessary to understand the analysis of the experimental results given in

Chapter 5. The chapter begins with a history in Section 2.1 of Massively Parallel

Processors (MPP) and a description of the specific MPP used in this research. Sections

2.2 and 2.3 provide detailed information on Networks of Workstations (NOW) and Piles

of PCs (PoPCs) and describe some of the current research in these areas. A description

of AFIT's NT/Linux PoPC is provided in Section 2.4. The following section provides

background information on data mining and some of the current research in this field of

study. The final section provides a summary of this chapter. For a general overview of

the principals of parallel processing, the reader is referred to Appendix A and [Kumar94].

2.1 Massively Parallel Processors (MPPs)

Rapid advancements in VLSI technology in the early 1980's led to lower prices

and an increased demand for personal computers and workstations. As the volume of

sales increased, the development costs were amortized over larger numbers of units,

reducing the production costs further and driving even greater technological

advancements. As PC sales outdistanced supercomputer sales by several orders of

magnitude, the price-performance gap widened. Seeking to take advantage of these

advancements in microprocessor technology, computer manufacturers introduced the first

commercial MPPs in the 1980's. At peak efficiency, microprocessor-based computers

such as Intel's Paragon XP/S and MasPar's MP-2 could exceed the speed of traditional

single-processor supercomputers, such as the Cray Y/MP and the NEC SX-3. [Qumn94]

Modern MPPs may consist of tens, hundreds, or even thousands of

microprocessors connected by a high-speed interconnection network. Because of the use

of mass-produced commodity microprocessors, the cost of upgrading these systems is

significantly less than that of the traditional supercomputers. Another major advantage of

MPPs is that they can be built to achieve an absolute performance, which is unobtainable

by a mainframe or supercomputer. Consider the following updated example from

Tanenbaum's distributed O/S text:[Tanenb95J

If 10,000 modern CPU chips, each running at 500 Million Instructions Per Second

(MIPS), were used to build an MPP, it would have a total theoretical performance

of 5,000,000 MIPS. For a supercomputer with a single processor to achieve this

same performance, it would have to execute an instruction in 0.0002 nanoseconds

(0.2 picoseconds), a feat which is impossible because of speed of light

restrictions.

Other advantages of MPPs, according to [Anders95], are the communication

performance and global system view. The high communication performance in MPPs is

primarily due to the close proximity of the network interface to the processors. This

interface is typically connected to the processor-memory bus, rather than the slower

standard I/O bus. The global system view provided by MPPs allows users to run their

applications on a large collection of processors as if it were a single entity. By using a

global scheduler, the user is granted exclusive access to individual processors as they

become available and doesn't have to be concerned with contention for resources.

Although MPPs have significant advantages, especially when compared to

traditional supercomputers, they are still lacking in a few areas. A major disadvantage is

the engineering lag required in developing the network hardware and proprietary

operating systems used by these MPPs. This time constraint means that the

microprocessors in MPPs are often a year or two behind the current technology. In

addition, the cost of this development is significant when compared to commodity

hardware and software prices. These disadvantages have made other parallel computing

alternatives, such as NOWs and PoPCs, more attractive.

Although the primary focus of this research is a comparative analysis of NT and

Linux PoPCs, some experiments are performed with an MPP and a NOW for additional

insight into the differences between MPPs, NOWs, and PoPCs. The MPP used in this

research is an IBM SP2 [ffiMSP2] maintained by the Aeronautical Systems Command's

(ASC) Major Shared Resource Center (MSRC) at Wright-Patterson AFB, OH. [MSRC]

The MSRC SP2 is comprised of 256 135 MHz RS/6000 P2SC processors, of which 233

are available for batch computing. The compute nodes each have one gigabyte (GB) of

available RAM memory. The interconnection network (ICN) for the SP2 is composed of

two High-Performance Parallel Interfaces (HiPPI) with a maximum theoretical

throughput of 800 Mbps. The topology of this ICN is essentially that of an omega1

network.

2.2 Networks of Workstations (NO Ws)

In the paper "A Case for NOW", [Anders95] the authors present several advantages

of NOWs for parallel computing over traditional supercomputers and MPPs. Among

those advantages, they cite an average price-performance advantage for workstations,

which is a factor of two higher than a comparable supercomputer or MPP. In addition,

the authors point out the availability of large amounts of aggregate DRAM in NOWs as a

second advantage. In his Master's thesis,[Gindha97] Gindhart compares the performance of

a network of Sun workstations with two MPPs - the Intel Paragon XP/S and IBM SP2.

He concludes from his experiments that the NOW offers at least 85% of the performance

of the MPPs for approximately 50% of the cost - a significant cost-performance

advantage. Again, the large sales volume of workstations, as compared to MPPs, along

with the faster processors normally found in NOWs, are the primary factors contributing

to this price-performance advantage.

The NOW used by Gindhart was constructed at AFIT in October 1996. This

system consists of four 175 MHz and two 200 MHz Sun Ultra workstations connected via

a 1.28 Gbps Myrinet crossbar switch and a 10 Mbps Ethernet hub. Each of the

workstations contains 128 MB of RAM, a 32 KB level 1 cache, a 512 KB level 2 cache,

1 For more information of omega networks see Appendix A, Section A. 1.3.1.

10

and two 1 GB local hard drives. Since the Myrinet ICN on this NOW has a much higher

theoretical throughput (2.56 Gbps in full-duplex mode) than that of ABC's fast Ethernet

switch (200 Mbps in full-duplex mode) and the processors are much slower, a completely

objective comparison of the two systems cannot be accomplished. However, the Pallas

benchmarks and parallel GRaCCE algorithm are run on this system to provide insight

into:

a) The effect of the ICN on the overall communication costs of a parallel system.

b) The effect of rapid technological change on parallel system performance,

specifically the difference in processor performance in only a two year span

between the construction ofAFIT's NOW and ABC clusters.

c) The effect of messaging layers on the various types of Interconnection

Networks.

d) The relative price-performance gap between PoPCs, NOW, and MPPs.

e) How using speedup as the only performance metric for an algorithm can be

deceiving.

Since PCs have an even higher volume of sales and thus lower unit costs and have

comparable processor performance to workstations, PoPCs become the next logical step

in capitalizing on the cost-performance advantage. The next section discusses some of

the common features of PoPCs and describes some of the current systems in use.

11

2.3 Piles of PCs (PoPCs)

2.3.1 Beowulf-The first PC clusters

Since the main objective for using PoPCs is to reduce costs, a common operating

system in use on these computers is Linux.[Linux] A PoPC running Linux is commonly

referred to as a Beowulf, named after the original system created at the National

Aeronautics and Space Administration (NASA) in 1994. [Ridge97] Linux is a POSIX

compliant operating system kernel that is freely available. The major advantage of this

O/S, other than the fact that it is free, is that the complete source code is available. This

allows implementers to modify the O/S to best suit their needs for such reasons as I/O

driver and messaging layer optimizations.

One of the disadvantages of Linux is the lack of technical support. There are

numerous technical books and magazines dedicated to Linux, as well as mailing

lists/users groups, [LUGR] which provide some useful troubleshooting information;

however, there are no help desks to call, as is the case with commercial software, if one

can't resolve a given problem with a "free" version of Linux. A commercial version of

Linux is available from Red Hat Software, Inc. [RedHat] Users can purchase technical

support with this software at an additional cost.

Another disadvantage of Linux is the lack of available applications that run under

the Linux O/S. The number of applications for Linux, though still relatively small, is

growing rapidly, due in part to recent announcements from various major computer

manufacturers that they will offer Linux as a pre-installed alternative on their systems.

12

2.3.2 NT Clusters

A more recent move in PoPC research has been to make use of PCs running the

Windows NT operating system. twindows] NT is a commercial, fault tolerant, 32-bit

operating system developed by Microsoft Corporation. It supports pre-emptive multi-

tasking and threading. It is also POSDC compliant and supports symmetrical multi-

processing (SMP). POSIX compliance allows it to run on multiple platforms, including

the Intel x86, IBM PowerPC, MIPS, and DEC Alpha. NT is sold as two separate

products - NT Workstation (NTW) and NT Server (NTS). NTW is optimized for

desktop computers where foreground applications receive the highest priority. NTS, on

the other hand, is optimized for background applications and is intended for use on

enterprise servers (e.g. to provide mail, file, or print services). Costs for the current

version of this operating system start at around one hundred-fifty dollars (NTW price).

So, cost is obviously not the driving factor for its use in PoPCs. One of the main factors

is NT's current install base and growing popularity, as both an enterprise server and

desktop operating system. Microsoft shipped more than 1.3 million copies of NT server

in 1997, far outpacing even its nearest competitor Novell, which shipped nine hundred

thousand units of NetWare that year. [Festa98] Hence, computers running NT are readily

available.

13

2.3.3 MPIonNT

Another driving force behind NT PoPCs is the development of tools for

parallelizing applications that execute under the Windows environment. This

development has been primarily focused on MPI. [MPI] Current research developments

have lead to the versions of MPI for NT listed in Table 1. Each of these versions is

discussed in the sections that follow.

Software Name Developed By

WinMPICH Engineering Research Center (ERC) at Mississippi State University
(MSU)

MPI/PRO™ MPI Software Technology Inc (MSTI)
WMPI Department of Computer Engineering, Coimbra University, Portugal
PaTENT WMPI 4.0 Genias Software GmbH
MPI-FMIHPVM Department of Computer Science, University of Illinois at Urbana-

Champaign (UIUC)

Table 1: MPI software for Windows NT

2.3.3.1 WinMPICH and MPI/PRO

WinMPICH, also known as MPICH/NT, [ERC] is a port of MPICH for NT

platforms. This software supports both shared and distributed memory architectures.

The developers wrote the original WinMPICH libraries to explore threads in the device

layer for communication, TCP/IP support was added later. [Baker98] MSU created two

designs of the shared memory device code for WinMPICH, one design supports POSK

threads, the other uses polling. Published reports indicate that the threaded version

consistently outperforms the polling version.[Hebert98] Because of a lack of funding, MSU

no longer supports WinMPICH. The code has been licensed to MPI Technology Inc,

14

which has produced a commercial version of this software called MPI/Pro™.[MST] AFIT

has acquired an eight-processor license for this software, which is used in this research on

our Cluster of NT Workstations, known as the AFIT Bimodal Cluster (ABC). (See

Section 2.4)

2.3.3.2 WMPI and PaTENT MPI 4.0

WMPI is based on MPICH and is a full implementation of the MPI standard for

Win32 platforms. WMPI also includes support for the ch_p4 device standard. [CH-P4]

This standard defines the communication interface between workstations in a

heterogeneous network. Ch_p4 support allows interaction between Windows 95/NT

workstations running WMPI and UNIX machines running MPICH. Similar to

WinMPICH, a commercial version of WMPI is also available - Parallel Tools

Environment on NT (PaTENT) MPI 4.0.[PaTENT] The PaTENT software is loaded on the

ABC cluster and used in this research.

2.3.3.3 HPVM

The goal of the High Performance Virtual Machines (HPVM) project at UIUC is

"to deliver high-performance computing from distributed computational and network

resources."[Chien97] The National Center for Supercomputing Applications (NCSA) in

conjunction with the Department of Computer Science at UIUC has built a 256-node NT

cluster of PCs using the HPVM software. HPVM 1.0 is a collection of high performance

parallel computing tools, which includes the following: Illinois Fast Messages (FM),

MPI-FM, FM-DCS (Dynamic Coscheduling), Put/Get-FM, and Global Arrays-FM. The

15

FM library was written for Myrinet networks and provides highly optimized, low latency

messaging. [Pakin95] MPI-FM is a high performance implementation of MPI for NOWs

with a Myrinet network, built on top of the FM library.[Launa97] This software is also free

and is loaded on the ABC cluster; however, due to the complexity of running this tool

without the expensive queuing software required for the Java-based front-end, HPVM is

not used in this research.[HPVM] [Platform]

2.4 AFIT Bimodal Cluster (ABC)

The PoPC used in this research was constructed and configured by the graduate

students in AFIT's parallel lab. Details about ABC's hardware, software, and

configuration are outlined in the sections that follow. For a diagram of ABC, see

Appendix B.

2.4.1 ABC's Hardware Configuration

ABC is a cluster of personal computers, consisting of one Dell 200 MHz Pentium

computer and one Dell 450 MHz, six Dell 400 MHz, and four Gateway 333 MHz

Pentium U single-processor computers connected via an Ethernet switch. Each of these

machines is housed in a tower or mini-tower case to allow for expandability. The VO bus

on the Gateways operates at 66 MHz; the Dell's I/O bus is clocked at 100 MHz. The

computers are housed in a portable rack, which allows easy access to both the front and

rear of the cases.

16

To narrow the focus of this research and facilitate analysis of the data collected

from the experiments outlined in Chapter 4, only a homogeneous subset of the computers

in ABC are used for this research. Since the 400 MHz PCs comprise the largest

homogeneous group, these were chosen. Each of the Dell processors has 128 MB of 10

nanosecond (ns) Synchronous Dynamic RAM (SDRAM), one 8.4 GB SCSI hard drive

for use under NT, and one 6.4 GB EIDE hard drive for Linux. These machines also have

a 512 KB Level 2 (L2) cache, a 16 KB instruction and 16 KB data Level 1 (LI) cache.

Future plans for ABC include increasing the number of nodes to 32 and possibly 64

computers, to include some Symmetrical Multi-processing (SMP) systems.

2.4.2 ABC's Interconnection Network

Initially the ABC cluster was connected via an 8-port 100 Mbps shared Ethernet

hub. The aggregate network bandwidth of this hub (200 Mbps in full-duplex mode) was

inadequate for any realistic distributed processing and ABC quickly outgrew the eight

ports available. This hub was eventually replaced with a 24-port Intel Express 510T fast

Ethernet switch, operating in full-duplex mode. The network interface cards (NIC) used

in each of the computers are also full-duplex fast Ethernet. This configuration provides

ABC with the equivalent of a crossbar network, providing a maximum theoretical

throughput of 200 Mbps per channel between nodes. One disadvantage of this switch,

which was discovered during benchmarking of the cluster, is that, as with the original

hub, the maximum aggregate network bandwidth of 800 Mbps, although four times

greater than the hub is insufficient. Tests using the Pallas benchmark suite show that the

17

network can become saturated when using only six processors for high communication

processing.

2.4.3 O/S and Software Tools on ABC

Each machine is dual-bootable2 under either Windows NT 4.0 or Linux 2.0.33

operating systems. Parallel communication/programming is handled through MPI/Pro

1.2.3 or PaTENT MPI 4.09 for Windows NT and MPICH version 1.1.0 for Linux. [MST]

[PaTENT] [Gropp96] TwQ Qf ^ NJ computers ^ loaded with Microsoft's Visual C++

version 6.0 compiler. This compiler is used for the GRaCCE conversion/compilation.

The Linux implementation provides a variety of compilers including the freeware

applications GNU C, G77, and G++, as well as, a commercial Fortran 90 compiler -

VAST/f90 [GNUGCC] [VAST/f9°]

There are no really effective visualization tools for NT loaded on ABC, however,

the Performance Monitor application, which comes with NT, and the Intel Device View

application, which comes with the switch, provide some level of insight into the network

performance. The Linux system is loaded with Upshot (part of the MPICH distribution)

[MPI] and Vampir 2.0, an MPI performance analysis tool developed by Pallas.[Pallas]

2
 Dual-bootable implies that a computer is capable of "booting" or starting under either of two different operating

systems.

18

2.5 Data Mining

2.5.1 Introduction

Large sets of data are normally not very useful unless they can be grouped into

meaningful sub-sets. This partitioning of data is known as classification. A good

example of a large body of data, which is relatively unusable without some type of

classifier, is the data available on the World Wide Webb (WWW). The search engines

that Internet "surfers" use daily provide a semi-effective form of classification. It is only

semi-effective because although a user may be able to find data relating to a particular

subject of interest, the specific information needed will still have to be extracted from a

large set of unrelated/semi-related data. This type of classification is known as text

mining.[PMSI]

Another form of classification, which is the subject of this research, is data

mining. The distinction between data mining and text mining is in the form of the data

being analyzed. As the name implies, text mining seeks to extract meaningful

relationships from text. The Internet search engines accomplish this task in a number of

ways, ranging from simple word counting to computer "world knowledge" techniques.

Data mining, on the other hand, also, seeks to extract "higher" knowledge from raw data,

but it does this through numerical processing of quantitative and qualitative data.[PMSI] In

other words, the data being analyzed, if not already in numerical form, are assigned

numerical values based upon some type of encoding scheme. It is noted that this

distinction between data mining and text mining is not universally accepted, as some

consider text mining just a more specialized form of data mining, while still others even

19

consider classification a form data mining. In addition, researchers have recently

proposed a new technique, known as web mining, for applying the principles of data

mining to Internet searches.

2.5.2 Description

Classification is a subject of interest to many different disciplines. In engineering,

it is often referred to as pattern recognition. In computer science and artificial

intelligence, it is also known as machine learning. It is not possible to discuss

classification methods for computer systems without referring to learning systems.

According to [Weiss91], "a learning system is a computer program that makes decisions

based on the accumulated experience contained in successfully solved cases." From this

definition we can then deduce that the objective of classification methods, based on the

learning system approach, is to "learn" (i.e. instantiate a given model) from sample data,

thus enabling successful classification and prediction on new data.[Weiss91] [Weiss98]

There are two general types of classification methods - unsupervised and

supervised. [Weiss91] in supervised classification, the classifier uses a training set to

"learn" how to classify data. This training set is a set of sample objects for which the

classes are known. A human expert has pre-determined the choice of learning cases in

this set. In unsupervised classification, there are no known cases. It is assumed that the

sample data contains natural statistical groups of patterns that represent particular types

of identifiable features. This type of classification is much more difficult and potential

for success very limited. In this research, we focus on the following supervised

20

classification methods: decision trees, neural networks, linear discriminants, and nearest-

neighbor classifiers.

2.5.3 Decision Trees

Currently the most highly developed classification method is the decision tree.

[Weiss98] ^ decision tree consists of nodes, which represent a single test or decision, and

branches. For binary trees, the decision at each node may be true or false. This decision

may also be whether a single parameter is greater than some constant. As with regular

trees, the starting node is known as the root. As a feature traverses down the tree, it

branches right or left based on the decision at each node, until it reaches a leaf node of

the tree, which corresponds to a specific class. An example of a binary tree where the

decisions are true or false is shown in Figure 1.[Weiss91]

False

Class 1 Class 2 Class 3 Class 4

Figure 1: Binary Decision Tree

An advantage of the decision tree method is that it is usually much faster, both

during the training and application phase, than many of the other classification methods.

One disadvantage is that they are not as flexible at modeling complex distributions as

either neural networks or nearest neighbor methods. Another disadvantage, which is

21

discussed in more detail in Section 2.5.8, is that decision tree methods often produce

overly complex classification rule sets.

2.5.3.1 CART

One of the most popular classification algorithms, based on the decision tree

method, is the Classification and Regression Trees (CART) algorithm.[Bnema84] CART,

which uses binary decision trees for both prediction and classification, is used for

"classification or regression analysis of large, complex data sets containing many

variables."[UCLA1 This algorithm recursively searches the sample data to produce an

optimal set of decision nodes in an extremely large tree. The tree is then "pruned" of any

branches that impair the overall accuracy. The result is the simplest tree that gives the

maximum accuracy. The main advantage of the binary tree produced by CART is that its

structure is easy to understand, interpret, and use. Even so, the rule set is still overly

complex compared to that produced by GRaCCE. [Manne

2.5.3.2 C4.5

Another decision tree algorithm, which was proposed by J. Quinlan in 1993 is

C4.5.[Quüjla93] Similar to CART, this algorithm generates a classification-decision tree for

the given data set by recursive partitioning of data. It does this using a depth-first

strategy. The algorithm constructs the tree by searching over all of the sample data,

generating a set of possible decisions, and selecting the set of tests that produce the

optimal classification. A single test is performed on attributes containing a discrete

number of values. If the values of an attribute are continuous, then binary tests involving

22

every distinct value are performed. [Joshl97] The C4.5 algorithm is not especially fast in

comparison with other serial decision tree algorithms; however, a freeware parallel

version, PC4.5, developed at New York University, is available for downloading from the

Internet. [PC4'5] In addition, as shown in [Marmel98], the rule set produced by this

method can be more complex than necessary for an accurate description of the data.

2.5.4 Neural Networks

Neural networks (or nets) are probably the most researched classification method

today. They are loosely based on the dense neural connections of the human nervous

system. The simplest neural net device is the single-output perceptron, which decides

whether an input pattern belongs to one of two classes. As with linear discriminants, this

decision is based on a weighted scoring function. A simple example of a single-output

perceptron is illustrated in Figure 2. [Weiss91] in this figure, II and 12 are the inputs and

Wl and W2 are the weights assigned to each branch. The weights of a perceptron are

constants and are "learned" by training on the sample cases. This is done by evaluating

each sample case sequentially and adjusting the weight if an output is incorrect.

Outputs
0 "

Figure 2: Neural Network Perceptron

23

The major advantage of neural networks is that they are general in nature. They

can handle complex problems with a large number of parameters. Unfortunately, neural

networks are very slow, especially in the training phase.[Weiss91] Another disadvantage is

that it is difficult to determine the nature of the decision process in neural networks. This

restricts their usefulness in the feature selection phase of data classification.[Whlte97]

2.5.5 Linear Discriminants

Probably the most common form of classifier, linear discriminants are quite

simple in structure. As the name implies, this type of classifier uses a linear combination

of the evidence to separate (discriminate) among the classes and to select the class

assignment for a new case. If the problem contains two features, then the classifier can

be graphically depicted as a line (partition) between two classes or clusters. This is

illustrated in Figure 3.

Figure 3: Idealized Class Separation by partition

24

Since a linear discriminant simply implements a weighted sum of the values of

the observations, the equation can be written in the general form shown in Equation 1.

[Weiss91]

W,e, +W2e2 1" Wded — W0 Equation 1: Linear Discriminants

2.5.6 Nearest Neighbor Classifiers

This method uses the assumption that an object is most likely to belong to the

same class as its nearest neighbor in the N-dimensional feature space. In reality, these

algorithms don't use the single nearest neighbor, but a constant number, k, of nearest

neighbors. Hence, this method is normally referred to as the k-nearest neighbor (k-NN)

algorithm. This method is completely nonparametric, that is, nothing is assumed about

the population. The class that appears most frequently among the k neighbors is chosen.

To avoid the possibility of a tie, an odd number of neighbors is always chosen. The most

commonly used measures of distance in this algorithm are absolute distance, euclidean

distance, and various other normalized distances.[Weiss91]

Nearest neighbor algorithms are very easy to implement and can produce good

results if the features are chosen carefully. They do however, have several disadvantages.

First, like neural networks, they don't simplify the objects to a comprehensible set of

parameters. Instead, they retain the entire training set as a description of the object

distribution. Also, if the training set is large, this method is very slow. Lastly, the most

significant disadvantage is their susceptibility to the presence of irrelevant parameters.

25

Even a single random parameter can cause misclassification of a large number of data

points.[White97]

2.5.7 Genetic Algorithms

Although genetic algorithms are not classifiers per se, they have been used

successfully to assist in feature selection and identification of partitions in linear

discriminant classifiers.[PMSI] Genetic algorithms are optimization techniques based on

Darwin's theory of natural selection. In a population, the best fit individuals survive and

reproduce, while those least fit for the environment die off. Each individual is uniquely

defined by the set of chromosomes, which is a subset of the union of those of its parents.

In data mining, the chromosomes are binary numbers representing the parameters (traits)

which describe an individual. Once a population has been established, a mechanism for

evaluating the "fitness" of each individual must be devised. This is generally known as

the fitness function. Individuals are selected to "mate" and produce offspring based on

this fitness function in combination with some basic probability. It is expected that over

time the entire population will evolve to a state of higher fitness. Other operators such as

mutation and inversion are often used to emulate the randomness experienced in nature.

The selection/reproduction/evaluation process is repeated over several generations until

the population has converged to a relative fitness. [Whitle94] rGoldbe89J

In his 1989 text, Goldberg introduces a two stage GA, known as the Simple

Genetic Algorithm (SGA). This algorithm starts with a current population. Selection is

applied based on fitness to create an intermediate population. This is followed by

26

recombination and mutation to create the next population. The pseudocode for

Goldberg's original SGA is shown in Figure 4. The original version was written in

Pascal. A version of this SGA, written in C, is used in the converted C++ GRaCCE

algorithm. For detailed information on the SGA, the reader is referred to Goldberg's text

[Goidbe89] and the GA tutorial from Colorado State University.[Whitle94]

1) Randomly generate initial population

2) Evaluate fitness of all population members

while i <= maximum generations AND

stopping condition != TRUE

3) Select Individuals

4) Perform Crossover

5) Perform Mutation

6) Evaluate fitness of all population members

end while

Figure 4: Pseudocode for Goldberg's Simple Genetic Algorithm

2.5.8 GRaCCE

The Genetic Rule and Classifier Construction Environment (GRaCCE) [Marmel98]
IS

an algorithm, developed with MatLab,[MatLab] for extracting classification rules from data.

Developed at AFIT by Ph.D. candidate - Maj. Robert Marmelstein, it uses genetic search

to initially select features from the data set. The fitness of each feature is based on the

accuracy achieved against a kNN classifier. The GRaCCE algorithm takes a set of

27

unstructured data and partitions the data into class homogenous regions such as that

shown in Figure 5. Each of the resulting partitions represents a classification rule. The

primary advantage of this algorithm, as compared to some of the more popular decision

tree algorithms such as CART lBriema84] and C4.5 [Quinla93] is that it is capable of producing

a simpler set of classification rules with approximately the same or better accuracy. The

GRaCCE algorithm is examined in detail in the next chapter.

n \

AA

X XX x \° «C * x Xs _- coo o _ * _ o cPo ° 'AvA v^ * x « *° x A\o* o °
-,"».* * X x\ O,' i *kL jxo c

o

:>.

Figure 5: Data Before and After Partitioning

2.6 Summary

This chapter has attempted to provide the reader with a clear picture of the history

of parallel computing that has lead to the transition from the traditional one-processor

supercomputer to the commodity-based piles of PCs. Advantages and disadvantages of

MPPs, NOWs, and PoPCs (Linux and NT) are discussed. Since one of the main

objectives of this research is the evaluation of parallel communication libraries for NT, a

Subsets of neighboring data in which the majority of the data points are from a single class.

28

considerable amount of discussion is spent on the ongoing research in this area. Lastly,

the reader is presented with background information on data mining/classification

techniques to include the general methods incorporated into the GRaCCE algorithm.

This information is necessary to understand the decomposition of GRaCCE presented in

the next chapter.

29

3 GRaCCE Algorithm Design/Decomposition

3.1 Overview

The first step in coming up with a parallel solution to a problem is understanding

the problem domain, then, decomposing the problem into individual tasks and identifying

which tasks can be executed concurrently. Next, the tasks must be mapped to an

algorithm. Once this has been completed the algorithm must be decomposed and any

further parallelizations identified. This chapter provides an in depth discussion in Section

3.3 of the GRaCCE algorithm, including task decomposition, task scheduling, and load

balancing. However, before decomposing the algorithm, the problem domain is briefly

discussed in Section 3.2. Section 3.4 records the decisions used in parallelization of

GRaCCE and provides the pseudocode for the final parallel code. The chapter concludes

with a prediction of the algorithm's performance in Section 3.5 and conclusions in

Section 3.6.

3.2 Problem Domain

As mentioned in Chapter 1, a decision was made to use a specific real world

algorithm — GRaCCE, in conjunction with the Pallas benchmark suite, for evaluating the

performance of NT and Linux clusters and the MPI tools for NT. The problem, which

this algorithm addresses, is the extraction of accurate and understandable rules that

define useful relationships between attributes in a database. [Marmel98] This process is

known as data classification or data mining. Several methods for attacking this problem,

30

including decision tree, neural network, nearest neighbor, and linear discriminant

algorithms, are discussed in the previous chapter. The general approach used by each of

these methods is to separate the data into homogenous regions based on the class

assigned to each data point. These regions are then used to define the rule set. The

specifics of how GRaCCE accomplishes these tasks are defined in the next section.

3.3 Algorithm Domain

The current GRaCCE code is written in MatLab. Part of the focus of this thesis

work is the conversion of this code to C++ and parallelization with the Message Passing

Interface (MPI) standard. Several issues had to be addressed before this code could be

parallelized. Most important was the issue of how to coordinate the GA-based searches

to eliminate unnecessary work. The MatLab code as written completes each search

sequentially. Boundary points are assigned to corresponding clusters at the end of each

search. New searches are begun using only unclustered boundary points. Thus, in the

serial version of the code, the majority of boundary points may never spawn a search. A

direct assignment of each boundary point to a separate processor would cause a large

amount of unnecessary work to be accomplished before a solution is found because

redundant searches, which isolate identical clusters, would be run. This is illustrated in

Figure 6.

In this figure, a search using boundary point bl would generate the cluster

enclosed by partitions pi to p4. Likewise, searches using boundary points b2 to b4

would generate the same cluster. Once all of the searches are complete, the results would

31

have to be integrated and the optimum solution gleaned from the set of solutions. So, the

direct assignment approach doesn't appear offhand to be the most efficient.

a \

-, so- oo8ft° ^A A*\ 4 A A V, I

* x x x * \° 08 o8 o \V o°»°\

A CtattAJ
0 Ci4$sB
x <$mC\

H O _ O O \

.Xv X Ä X \0 oo
0"*^ * x x\ o

oop o _ & o _ o
X •

<>A A Mx% 0O V"
ON * * \ "<* A.A A4. A\v o o,

V
S S

'4>4

p2

. p3

Figure 6: Redundant Cluster Identification

Another possible solution to this problem is to preempt searches as new

information becomes available from other completed searches. That is, assign all

boundary points (or sets of boundary points if enough processors are not available) to

individual processors, and as searches complete, use the information from these searches

to determine which boundary point searches are unnecessary. Once determined, the

affected boundary point search could be preempted or removed from the processing

queue if the search has not yet begun. This of course, would require some type of

dynamic load balancing, such as the methods described in [Yang90], to ensure that some

processors are not idle while others have heavy queue loads. This issue is explored

further in the sections that follow.

32

3.3.1 Data Decomposition

At a data decomposition level, GRaCCE can be divided into the following phases:

feature selection, partition generation, data set approximation, region identification, and

region refinement. [Marmel98] provides a good description of each of these phases.

These phases can be further decomposed into the following tasks:

Tl. GA-based feature selection - selects the best m features
T2. Winnowing process - remove all points misclassified by kNN classifier
T3. Estimate class boundaries - use estimates to create partitions
T4. Compute weight for each boundary point
T5. Select target class cot which has not yet been evaluated
T6. Choose unassigned boundary point with greatest weight as focus of search
T7. Filter out partitions not related to the class of the chosen boundary point
T8. Measure partition distance to the boundary point
T9. Sort partitions on distance from boundary point
T10. Orient partitions such that boundary point, b, has a positive value
Tl 1. Find initial solution using a greedy search technique
T12. Initialize GA population with results from greedy search
T13. Perform GA-based search
T14. Assign boundary points within best region found
T15. Filter out disproportionately small regions
T16. Test and remove extraneous boundaries
T17. Recompute the covariance matrix of each region

Tasks T6 to T14 are repeated for the remaining boundary points in target class (Ot.

Once all boundary points in (Ot have been evaluated, tasks T5 to T14 are repeated for all

remaining classes. This decomposition of tasks is graphically illustrated in Figure 5.

Repeat for all boundary points in class

Repeat for all remaining classes

Figure 7: Data Decomposition of GRaCCE Algorithm

33

The region identification phase (T5-T14) is the best candidate for parallelization

since each of the class evaluations are independent and all candidate partitions are known

a priori. A proposed parallel decomposition of the above tasks is illustrated in Figure 8.

This figure shows both the decomposition of searches for clusters of points belonging to a

particular class and the separate searches associated with different classes.

Figure 8: Parallel Data Decomposition of GRaCCE Algorithm

Further parallelization may be possible, by decomposing the GA-based search.

The decomposition of tasks is as follows:

T12. Initialize GA population
T13a. Mutate population
T13b. Evaluate fitness of population
T13c. Assign fitness
T13d. Select individual for breeding
T13e. Recombine individuals
T13f. Mutate individuals
T13g. Evaluate offspring

34

T13h. Reinsert offspring into population

In this decomposition, tasks T13c to T13h are repeated as long as there is

improvement in the population as compared to the results of the previous greedy search.

If we parallelize this loop, we get the decomposition as illustrated in Figure 9. This level

of decomposition would not yield significant improvements in overall performance. In

reality, it may actually degrade the performance since the amount of interprocessor

communication would increase by a factor of G/n, where G is the number of generations

for each GA search and n is the number of processors.

Figure 9: Parallel decomposition ofGA-based search

3.3.2 Task Decomposition

As has been mentioned previously, the current code for the GRaCCE is written in

MatLab. To limit the scope of this research to a feasible problem size, the conversion of

the current code to the C++ programming language and subsequent parallelization is

limited to the region identification section of the algorithm (i.e. tasks T5-T14). This

section of the code accounts for approximately 90% of the application's execution time

35

and offers the highest probability for improving the overall performance. The winnowed

data set, list of generated partitions, boundary points and calculated boundary point

weights used in the region identification phase are provided by the original GRaCCE

algorithm. A preliminary review of the code for a serial conversion to C++ yields the

pseudocode shown in Figure 10. This pseudocode is used in the decomposition of the

algorithm that follows. It is noted that this pseudocode is not a complete algorithmic

decomposition of the MatLab code. A complete decomposition is not necessary to

discuss task distribution and load balancing.

36

Program cGRaCCE
Begin
Getjiata (); /* load data from output files

For target_class = classmin to classmax /* loop through all classes
Get_target_class_data (); /* load data for this target class
While (unclusteredjbpts > 0) /* loop until all tc bpts have been clustered

Curr_bpt = Max (bpt_set); /* select bpt with the greatest weight

For count = 1 to num_bnds /* loop through partition set
If (partition IN target_class)

Add partition to boundary subset; /* filter out unrelated partitions
Compute Distance; /* measure distances to partitions

End If
End For
Sort Distance_Array; /* sort partitions on distance from bpt
For counter = 1 to ringer_size /* greedy search

Initialize ringer[counter];
Calculate Value;
Compare with Ringer Score;
Assign Ringer Value & Score;

End For
If Ringer Score < Search Threshhold

Initialize GA population; /* initialize with greedy algorithm results
Mutate population;
Evaluate fitness;

End If
While (Generations < Min_Gen) /* perform GA search

Assign fitness;
Select individuals for breeding;
Recombine & Mutate individuals;
Evaluate & Reinsert offspring;
Update Score;
Break if no improvement;

End While
If (GA_Sol > RingerScore) /* Use best results of two searches

Use GA results;
Else

Use Greedy Search results;
End If

Simplify Region (); /*remove unnecessary partitions
AssignJBpts (); /* assign appropriate bpts to cluster
Update BptsQ; /* rebuild bpt list from original data set

End While /* all tc bpts have been evaluated
End For /* all classes have been evaluated

End Program;

Figure 10: Pseudocode for Serial GRaCCE algorithm

The primary control structures in the cGRaCCE pseudocode are the first "For"

and "While" loops. The first "For" loop iterates through the set of classes for a data set.

37

Tests with various ordering of class evaluations have shown that the particular order

doesn't affect performance or accuracy. This is understandable since class evaluations

are independent with the exception of assigning higher priorities to previously used

partitions. This exception does not affect accuracy or performance, but contributes to

reducing the final rule set. Thus, for the serial algorithm, the classes are evaluated in the

order in which they are read from the data structure. This ordering may become

significant in the parallel version of the code, as the number of boundary points in each

cluster affects the load balance on each processor. This of course, is only a factor if the

tasks are allocated to processors based on class.

The "While" loop iterates through the boundary points within a cluster. Unlike

class ordering, the order of the boundary point evaluations does effect performance

and/or accuracy, even in the serial algorithm. By evaluating boundary points with the

greatest weights first, other boundary points should be clustered more rapidly,

eliminating the need for redundant evaluations of boundary points enclosed by the same

partitions. For the parallel version, this brings us back to the problem of redundant

cluster identification, discussed in the last section, and illustrated in Figure 6.

The other major sections of this pseudocode include the greedy search, GA

search, and cluster refinement. These basically follow the previously discussed data

decomposition. Although there are calculations, which are performed in the various

sections of the algorithm, these calculations are trivial when compared with the data

decomposition and potential communication costs. That is, an attempt to decompose this

38

algorithm based on the lower level calculations significantly increases the amount of

communication necessary between processors. Thus, this particular decomposition of the

algorithm doesn't actually reveal a significant difference in an algorithmic decomposition

as compared to the data decomposition, and so, we shall focus on the tasks previously

identified.

Since it is evident from the serial pseudocode that the primary task decomposition

for the parallel code remains the same, the parallel pseudocode can be written as shown

in Figure 11. The two main loops are replaced with assignments of the tasks using a

breakdown by class, boundary point, or a hybrid of the two, to available processors.

Program Parallel-GRaCCE
Begin
Get_data (); /* load data from files output by MATLAB GRaCCE

algorithm
Broadcast_data (); /* distribute to appropriate processors
Assign_processor; /* assign each class/boundary point to a processor

Execute Code /* execute code used by serial algorithm on each processor

Gather_data; /* gather data from each processor and analyze results
Output results; /* print solution to screen

Figure 11: Pseudocode for Parallel GRaCCE algorithm

3.3.3 Task Scheduling

Task scheduling for this algorithm depends on how the problem of the GA-search

coordination is handled. As was mentioned previously, we could allow preemption of a

39

task if a previously completed search has nullified the need for the current or scheduled

task. If tasks are scheduled by boundary points, this could lead to a large increase in

communication costs. If scheduled by class, then the communication requirements would

be very low, but since the number of classes is normally much less than the total number

of boundary points, this might significantly reduce the overall scalability of the

algorithm. Each of these options is discussed in the sections that follow.

3.3.3.1 Scheduling by Class

If the boundary point evaluations for a particular class are all allocated to the

same processor, then the results from each evaluation can be used to eliminate

unnecessary boundary point evaluations without significantly increasing communication

costs. There is, however, some increase in communication, as the partitions, which have

been selected for a cluster, are given a higher priority for use in other cluster/class

evaluations. This information must be shared with all other processes where the partition

may be evaluated for use in bounding a cluster. Thus, there has to be some type of all-to-

all broadcast, based on the inclusion of a partition in a particular class or boundary point

partition set.

The major drawback with scheduling by class is the limit on scalability imposed

by this approach. For instance, if a particular data set is composed of four classes of data

with an average of sixteen boundary points per class, we could only use a maximum of

four processors. By scheduling the same data set according to boundary points, we could

possibly use up to sixty-four processors.

40

3.3.3.2 Scheduling by Boundary Point

When scheduling by boundary point, all boundary points belonging to the same

class should be allocated to neighboring processors if possible to reduce communication

costs. For instance, if we wish to schedule the tasks, listed in Table 2 below, onto the

hypercube in Figure 11, we might end up with the scheduling shown in Table 3. As you

can see, by trying to reduce communication, we may end up with a load imbalance

among the processors. Thus, we must also, consider the ratio of computation cost to

communication cost when developing a scheduling method.

Class

CO

g
'o

C
3
O
PQ

0)1 0)2 0)3 0)4
Tl T7 T14 T18
T2 T8 T15 T19
T3 T9 T16 T20
T4 T10 T17 T21
T5 Til
T6 T12

T13

Table 2: Tasks (boundary points) Figure 12: Processors in a Hypercube

Processor

M
CO

P0 PI P2 P3 P4 P5 P6 P7
Tl T4 T7 T10 T14 T16 T18 T20
T2 T5 T8 Til T15 T17 T19 T21
T3 T6 T9 T12

T13

Table 3: Scheduled Tasks for Hypercube

41

3.3.4 Load Balancing

As with task scheduling, load balancing also depends on the method of search

coordination. It was illustrated in Table 3 that scheduling by boundary point with

communication costs as the deciding factor could lead to a load imbalance. One possible

method of avoiding this problem would be to use the duplication-scheduling heuristic

(DSH) outlined in [El-Rew94]. Table 4 shows how tasks might be scheduled using DSH.

Task T13 is duplicated to processors 6 and 7, which are neighbors of processors 2 and 4,

respectively. Thus all of the tasks (boundary points) in class 2 now have access via

neighboring processors to data produced by intra-class boundary points. This example

does not follow the strict definition of DSH, which refers to duplicating a task on the

processor (not neighbor) where the data is needed, but the same principle applies.

Processor

PO PI P2 P3 P4 P5 P6 P7
Tl T4 T7 T10 T14 T16 T18 T20
T2 T5 T8 Til T15 T17 T19 T21
T3 T6 T9 T12 T13 T13 T13

Table 4: Scheduling using Duplication

One factor of scheduling by boundary point that was ignored in the above

example was the fact that the boundary points within a particular class are evaluated

based on their weight. To achieve this objective, it is necessary to use some type of list

scheduling technique that schedules tasks based on a priority scheme. One such method

is the Heavy Node First (HNF) technique outlined in [Sharaz95]. This technique

basically assigns a weight to each task at each level. The heaviest nodes (tasks) are

42

assigned to processors with the smallest accumulated execution time. The

communication delay can also be factored into the decision of on which processor a task

should be placed.

Both of these methods, DSH and HNF, are static list scheduling techniques. They

don't address the issue of how to dynamically remove tasks that are no longer necessary

or how to dynamically redistribute the load after previously scheduled tasks have been

removed from a processor's queue. The first issue can't be directly handled by any of the

generic dynamic scheduling schemes. It requires that some type of additional processing

occur that decides based on data from completed tasks which tasks should be removed

from the appropriate queues. This processing could be done on a central (i.e. supervisor)

processor that would analyze the data broadcast by each processor, remove the

appropriate tasks, and redistribute the workloads. This, however, would incur a high

communication cost. A better method might be to let each processor analyze its own data

and report to the supervisor the tasks that need to be removed. Since, this list of null

tasks normally resides on the same or neighboring processor as the processor which is

reporting the list, it may still be better to just allow the processor to remove the null tasks

and only report their individual queue lengths to the supervisor. If this technique proves

to be efficient, then it may be beneficial to take it one step further by instead using either

the "LOWEST" or "THRHLD" algorithms discussed in [Yang90]. These algorithms

should reduce communication costs even further while maintaining a better balance of

workloads.

43

3.4 Parallel GRaCCE (cGRaCCE) Algorithm

After careful consideration of all factors involved, a decision was made to

parallelize the outer loop of the GRaCCE algorithm (refer to Figure 10). That is, each

processor is assigned a class or set of classes (if the number of processors is smaller than

the number of classes) to evaluate for CH regions. The primary reasons for this decision

are 1) low communication required, 2) more compatible with the size of clusters used in

this research (maximum of 12 processors for ABC and 6 for AFIT NOW), and 3) less

complex static scheduling scheme could be used. The pseudocode for the final parallel

algorithm is shown in Figure 13. This pseudocode also shows the timings taken to

compute the computation and communication ratios.

Program cGRaCCE
Begin
Initialize MPI
Record time (Tl) /* use MPI_Wtime to record starting time
Get_data (); /* load data from files output by MATLAB GRaCCE

algorithm
Broadcast_data (); /* distribute to all processors
Record time (T2) /* used to determine I/O & communication overhead
Assign_processor ; /* assign class(es) to all processors

Execute Code /* execute code used by serial algorithm on each processor

Record time (T3) /* used to determine actual computation time
Gather_data; /* gather data from each processor and analyze results
Record time (T4) /* used to determine total execution time
Output results; /* print solution to screen

Figure 13: Pseudocode for final cGRaCCE code

44

3.5 Predicted Performance

The MatLab version of GRaCCE can execute in a matter of seconds on very small

data sets; however, it can take more than a day to complete when using relatively large

data sets. As mentioned previously, the rule set generally produced by GRaCCE is much

simpler than that of CART or C4.5 and the accuracy is essentially equivalent. The

performance (i.e. speed), on the other hand, is much slower than the competing

algorithms. This is the primary driving factor behind converting and parallelizing the

existing code. Since each class evaluation is essentially independent, one would expect

an almost linear speedup. However, as shown in Chapter 5, this is not the case. The

amount of work required to isolate all of the clusters for a particular class varies, thus,

leading to load imbalances among the processors. In addition, the effects of caching and

communication overhead contribute to a sublinear speedup.

3.6 Summary

This chapter has briefly touched on some issues concerning the data/task

decomposition of the GRaCCE algorithm, as well as, issues concerning task scheduling

and load balancing of this decomposition. Also, discussed are decisions that influenced

the final parallel C++ algorithm. The next chapter presents the metrics and methodology

used to analyze the performance of this algorithm, as well as, the performance of the NT

and Linux clusters and MPI tools for NT.

45

4 Methodology and Design of Experiments

This chapter describes the tools and techniques used to evaluate the performance

of ABC, the parallel GRaCCE algorithm, and the various MPI tools for NT. It begins

with a general discussion of performance metrics for parallel systems in Section 4.1.

Section 4.2 provides a description of the design for each of the three experiments used to

analyze the aforementioned performance. The chapter concludes with a description of

the statistical technique used to validate the results of these experiments.

4.1 Measuring Performance

Unlike serial algorithms, a parallel application can't be evaluated simple in terms

of its execution time and input size. One must also take into consideration the number of

processors used and the architecture of the parallel system. The combination of an

algorithm and the parallel architecture on which it is implemented is known as a parallel

system.[Kumar941 In comparison to serial programming, parallel programming is still a

rather new field. Many of the tools/techniques for parallelization are still under

development and are not always dependable. The MPI standard has helped to alleviate

some of these problems, but it is still not uncommon for the development of an efficient

parallel algorithm for a specific problem to take years.

Once a parallel algorithm has been developed, it must be tested using metrics that

evaluate the degree to which parallelization has been reached. The most common metric

is the parallel run time. Often abbreviated Tp, this is the time that elapses from the start

46

of the program until the last process finishes. This metric is compared to the run time

(Ts) of the fastest serial algorithm for the same problem to determine the speedup,

efficiency, and isoefficiency of the parallel algorithm. These three metrics are discussed

in the sections that follow.

4.1.1 Speedup

There is some ambiguity over the question of what is speedup. Most authors,

however, agree on the following definition: speedup (S) is "the ratio of the run time of

the fastest known serial program on one processor of the parallel system to that of the

parallel program running on p processors of the parallel system."[Paohec97]

Serial.run..time Ts
opeedup = = Equation 2: Speedup

Parallel..run..time Tp

This metric basically gives us an idea of how much performance was gained by

parallelizing a particular algorithm. In theory, a program that runs in time T on a single

processor could run in time T/p on p processors (i.e. p times faster). This is known as

linear speedup.[Kumar94] In practice, however, the speedup is usually sublinear primarily

due to the added communication overhead required to distribute the program to multiple

processors and because programs normally contain sections of code which are inherently

sequential and cannot be parallelized.

If the observed speedup is greater than p, known as superlinear speedup, this

normally indicates that the serial algorithm used was not the fastest or, perhaps, that a

47

greater portion of the problem domain fits within cache memory and does not have to be

swapped to and from the hard disk. A stochastic search algorithm may also report

superlinear speedup since the probability that a search reaches a solution in a fixed

amount of time is greater when multiple paths are taken in the search. One can argue,

however, that this again is not superlinear since a serial algorithm could be written to

begin the search along the same path. This phenomenon of superlinear speedup was

observed for certain trials of the parallel GRaCCE algorithm. The contributing factors

are discussed in Section 5.4.2. Speedup alone doesn't provide an accurate picture of a

parallel algorithm's performance. A look at an algorithm's efficiency is also necessary to

complete the picture.

4.1.2 Efficiency

Although a parallel program may continue to experience an increase in speedup as

the number of processors upon which it is run increases, the amount of this speedup

eventually tapers off. This results from the fact that processors can not devote 100

percent of their time to computation, but must allot time to operating system tasks as well

as communication requirements. Efficiency measures the benefit of adding more

processors and is defined as the ratio of the speedup to the number of processors.[Kumar94]

~~~ .       ,„.        Speedup        S      T 
Efficiency(E) = = — = —— Equation 3: Efficiency 

# processors    p    pT 

Since, the speedup, in theory, can't exceed p, the efficiency, in theory can never 

exceed one. An algorithm is generally considered scalable if a fixed efficiency can be 

maintained as the number of processors is increased and the problem size is also 

48 



increased. The rate at which the problem size must be increased to maintain a fixed 

efficiency varies among different parallel systems and determines the degree of 

scalability for that system. This rate is defined by the isoefficiency function.[Kumar94] 

4.1.3 Isoefficiency 

The isoefficiency function given in Equation 4 is simply a measure of the rate at 

which the workload W (i.e. problem size) must be increased for a particular system to 

maintain a fixed ("iso") efficiency. This function is dependent upon the overhead (To) 

incurred as a result of the parallelization. Scalable systems have small isoefficiency 

functions since the workload only has to be increased at a relatively slow rate to maintain 

a fixed efficiency. If a fixed efficiency can not be maintained no matter how fast the 

problem size is increased on a particular system, then that system is unscalable.[Kumar94] 

W = T0(W,p) Equation4: Isoefficiency 
\-E 

4.2   Experiments and Benchmarks 

In the article "Experimental Models for Validating Technology", the authors state 

that approximately 40 to 50 percent of the more than 600 published software engineering 

papers they reviewed contained no validations of the claims that were made. [Zelkow98] 

This thesis research makes no preliminary hypothesis on the outcome of the analysis 

included in this research; however, all resulting assertions have been backed up with 

49 



experimental validation through statistical analysis of the collected test data.   As was 

noted in Chapter 1, the three primary objectives of this research are to: 

4) Compare the performance of an NT PoPC with that of a Linux PoPC. 

5) Compare the performance of the various MPI implementations for NT (MPIIPro & 
PaTENTMPI). 

6) Analyze the performance of a parallel C++ version of the GRaCCE algorithm. 

To meet these objectives, a series of three experiments are performed. Since one 

of the primary goals of experiment design is reproducibility, [Barr95] all of the parameters 

used in these experiments are outlined in the sections that follow. Detailed information 

on the configuration of all hardware and software used in these experiments is also 

provided. 

4.2.1 ABC-Linux vs. ABC-NT 

To analyze the overall performance of a parallel system, one needs to test the 

system with a variety of algorithms which are representative of the applications normally 

run on these systems. This, of course, is no small undertaking, as source code must be 

located, compiled, and tested for many types of parallel problems. A better approach is 

to run a benchmark suite that tests the parallel functions, which are most often used by 

these algorithms. The Pallas MPI Benchmarks (PMB)[Pallas] provides this functionality. 

The objectives of the PMB suite, as outlined in the accompanying User's Guide, are: 

• Provide a concise set of benchmarks targeted at measuring the most important 

MPI functions. 

• Set forth a precise benchmark methodology. 

50 



•   Don't impose much of an interpretation on the measured results: report bare 

timings instead. Show throughput values, if and only if these are well defined. 

This software is free and can be downloaded from the web at [Pallas]. This code 

has been loaded on ABC and compiled under NT using the MPI/Pro and PaTENT MPI 

libraries. It has also been compiled under Linux using the standard MPICH 1.1 library. 

4.2.2 Benchmarking MPI Tools 

The major advantage of using the PMB suite for evaluating the performance of 

the NT and Linux cluster is that it also allows evaluation of the MPI implementations for 

NT using the same collected data. Hence, no additional experiments were necessary to 

accomplish the second objective of this research. 

4.2.3 Parallel GRaCCE Performance 

In order to accurately analyze any performance improvement gained by 

parallelization of the GRaCCE algorithm, it is necessary to test the new algorithm on a 

number of data sets varying in the following characteristics: size of data set, number of 

classes, number of boundary points, and feature size (dimensionality). The parameters 

used for each test are outlined in Table 5. 

51 



Data Set Class Dim Data lincl linds Procs Gens Iterations 1 Total 
Name Points Points trial Iterations 
Checker 2 2 1000 105 66 1,2 10,100, 

1000 
30 180 

TH513 5 2 799 61 48 1,2,3,4 
,5 

10,100, 
1000 

30 450 

Glass 4 4 97 23 25 1,2,3,4 10,100, 
1000 

30 360 

Cancer 2 9 523 17 11 1,2 10,100, 
1000 

30 180 

Wine 3 3 130 21 17 1,2,3 10,100, 
1000 

30 270 

Table 5: Parameters for Experiment III 

All of the trials in Table 5 were repeated on ABC under NT and Linux using a 

variety of MPI tools, on the AFIT NOW, and on the MSRC's IBM SP2. The MPI 

software used on these systems is as follows: MPI/Pro 1.2.3 and PaTENT MPI 4.09 on 

NT, MPICH 1.1.0 on Linux, MPICH 1.0.13 for Myrinet on the AFIT NOW, a proprietary 

implementation of MPI on the SP2. The best results from the all trials were used to 

evaluate the performance of the parallel GRaCCE algorithm. These trials were also used 

to compare the performance of a real world application with that of the Pallas 

benchmarks using the same MPI implementations. 

4.3 Statistical Validation 

Analysis of experimental results without statistical validation of the collected data 

can lead to inaccurate conclusions based on faulty data. There are a number of methods 

for validating results, such as the tests of means, tests of variances, Bernoulli tests, Chi- 

Square tests, Empirical Distribution Function (EDF) tests, and the Analysis of Variance 

(ANOVA) tests. The method used in this research effort is the ANOVA test. One of the 

primary reasons for choosing this method is that it accomplishes the main goal of 

52 



validating the experimental data, it is available in most standard spreadsheet applications, 

and the results are conclusive and easy to interpret. Microsoft Excel, which was used to 

create the performance charts for the analysis of cGRaCCE, provides the built-in 

ANOVA function that is used. 

Since the ANOVA method assumes a normal distribution of data, a generally 

accepted "large" sample size of 30 trials [Allen90] is used to approximate a normal 

distribution. The ANOVA test is only applied to the analysis of the parallel GRaCCE 

performance. Statistical validation of the Pallas benchmark suite would have been 

redundant and is not necessary. For validation of the collected data, a 95% confidence 

interval (C.I.) is used. This is a commonly used C.I. for this type of experiment and is 

sufficient since the collected data is only used to provide close approximations of the 

speedup and efficiency of the parallel version of GRaCCE. These approximations are 

sufficient for determining the performance gain and scalability of the algorithm. 

53 



5     Analysis of Results 

5.1 Overview 

This chapter presents a detailed analysis of data collected from the experiments 

discussed in Section 4.2. This analysis is accomplished with regard to the three main 

objectives of this research, as presented in Chapter 1. The results of experiments with the 

Pallas MPI Benchmark suite and with the parallel/concurrent GRaCCE algorithm, 

referred to as cGRaCCE, are used in Section 5.2 to compare the performance of Linux 

and NT PoPCs. Using the same data, a comparison of the two primary MPI tools for NT 

clusters, MPI/Pro and PaTENT MPI, is accomplished in Section 5.3. An analysis of the 

performance of the parallel cGRaCCE algorithm concludes the chapter. 

5.2 Linux Cluster vs. NT Cluster 

This section compares the performance of the NT and Linux clusters. To 

maintain homogeneity and thereby reduce the complexity of this analysis, only the six 

Dell 400 MHz PCs in the ABC cluster are used. This comparison is based on an analysis 

of the data produced by the Pallas MPI benchmark suite. The results from the best runs 

of the cGRaCCE algorithm are also used to compare the results of a real world 

application with those predicted by the benchmarks. 

Although the primary focus of this section is an analysis of the performance of 

NT and Linux clusters, comparisons are also made with data collected from similar 

experiments on the AFIT NOW and the MSRC's IBM SP2. It is noted, however, that the 

54 



latter comparison is not intended to provide conclusive results about the performance of 

PoPCs versus NOWs versus MPPs in general. That type of comparison is beyond the 

scope of this research; however, a price-performance comparison of the specific 

platforms used in this research is performed. 

The remainder of this section is divided up as follows. Section 5.2.1 details the 

factors that contribute to the general performance of each of the tested parallel platforms. 

In Section 5.2.2, optimizations for each of the different compilers used in this research 

are discussed. The results of trials with the Pallas benchmark are analyzed in Section 

5.2.3. Section 5.2.4 compares the run time performance of cGRaCCE on each of the 

platforms. The following section provides a price-performance comparison of the ABC, 

AFIT NOW, and IBM SP2. In the final section, conclusions about the performance of 

Linux/NT PoPCs, NOWs, and MPPs are presented. 

5.2.1 Factors Affecting System Performance 

The primary factors affecting the performance of each of the systems tested 

include the processor speed and performance, memory size and speed, compiler 

optimizations, and ICN throughput and latency. A good indicator of processor 

performance is given by the Standard Performance Evaluation Corporation's (SPEC) 

CPU benchmarks. [SPEC] This benchmark suite includes a numerical rating of processor 

performance based on floating point operations (SPECfp95) and integer operations 

(SPECint95). 

55 



Compiler optimizations are discussed in Section 5.2.2. The remaining parameters 

are listed in Table 6. The SPEC benchmark rating is given as the ratio of the execution 

time of a processor to that of a reference machine. [SPEC] Thus, a higher number for the 

SPEC benchmarks indicates greater performance. One interesting parameter to note in 

Table 6 is the SPECfp95 rating for the SP2. Although the clock speed for the SP2's 

P2SC processor is approximately one-third that of the ABC's Pentium II processor, this 

benchmark indicates a 40% advantage in performance for floating point operations on the 

SP2. This higher rating is a due to the powerful pipelined floating point units in the 

P2SC processor, which are capable of executing up to four floating point operations per 

clock cycle. [IBMSP2] This provides the SP2 with a significant advantage for applications, 

which contain a large number of independent floating point operations. 

Processor SPEC SPEC In stritetio nIData Level 2 RAM ICN 
fp9S int<)5 Cache Size (KB) Cache 

(MBIns) 
(MBIns) Speed 

(Mhps) 
Dell 400 MHz Pentium 
II (ABC) 
Sun 167 MHz 
UltraSPARC (NOW) 
IBM135MHzP2SC 
(SP2)  

12.4 15.3 

9.06 6.26 

17.6       6.17 

16/16 

16/16 

32/128 

512 128/10 200 

512 128/60        2560 

None       1024/70        800 

Table 6: System Parameters for ABC, NOW, and SP2 

56 



5.2.2 Compiler Optimizations 

The C compilers used on each of the test systems for cGRaCCE are listed in 

Table 7. 

Parallel System Operating System Compiler Optimization Used 

ABC-NT Windows NT 4.0 MS Visual C++ v. 6.0 "Maximize speed" 
ABC-Linux Linux 2.0.33 GNU g++ 2.7.2.3 03 
AFITNOW Solaris 5.5.1 GNU g++ 2.7.2 03 
IBMSP2 AIX4.1 IBM AIX xlC 03 

Table 7: C++ Compilers and Optimizations used 

It was originally decided that the default optimizations for each compiler would 

be used. This proved to be a bad decision for the following reasons: 1) the default for 

MSVC++ is "maximum" optimization for speed and 2) the default for g++ [GNUGCC] and 

xlC is no optimization. This significantly impacts the performance of cGRaCCE on the 

platforms using g++ and xlC and makes it difficult to make a fair comparison between 

the NT cluster where the code was optimized and the other systems. Subsequently, it was 

decided to use the maximum optimization for each system. Figure 14 shows the 

performance difference between the unoptimized and fully optimized versions of 

cGRaCCE on the SP2, AFIT NOW, and Linux ABC cluster. 

57 



Checker Performance 

1400 •« 

1200 

1000 

800 

600 

400 

200 

Number of Processors 

E3 Linux - Opt   E3 Linux -Unopt o NOW - Opt    El NOW -Unopt 

■ SF2 - Opt      ■ SP2 - Unopt 

Figure 14: Effects of Compiler Optimizations on cGRaCCE Performance 

As the chart shows, the performance more than doubles when the maximum 

compiler optimization is used. This increase can be attributed to the large number of 

optimizations used by modern compilers.   For instance, the GNU g++, used by ABC- 

Linux and the AFIT NOW, uses the following optimizations: [GNUGCC] 

Automatic register allocation 

Common sub-expression elimination (CSE) 

Invariant code motion from loops 

Induction variable optimizations 

Constant propagation and copy propagation 

Delayed popping of function call arguments 

Tail recursion elimination 

Integration of in-line functions & frame pointer elimination 

Instruction scheduling 

Loop unrolling 

Filling of delay slots 

Leaf function optimization 

58 



• Optimized multiplication by constants 

• The ability to assign attributes to instructions 

• Many local optimizations automatically deduced from the machine description 

5.2.3 Pallas MPI Benchmarks (PMB) 

As was mentioned in 4.2.1, the PMB suite measures the performance of the most 

important MPI functions. It does this by measuring the latency of each function and the 

throughput for specific functions. The suite consists of eleven benchmarks as follows: 1) 

PingPong, 2) PingPing, 3) Sendrecv, 4) Exchange, 5) Allreduce, 6) Reduce, 7) 

Reduce_scatter, 8) Allgather, 9) Allgatherv, 10) Beast, and 11) Barrier. These 

benchmarks are divided into the following three categories: single transfer, parallel 

transfer, and collective functions. It is not necessary to evaluate all of these benchmarks, 

as many provide redundant information. Therefore, in this section, we concentrate on 

three of the benchmarks, one from each of the three primary categories. The three 

evaluated are PingPong, Sendrecv, and Beast. These benchmarks are well representative 

of the MPI constructs used in cGRaCCE, which only uses the MPI_Send, MPI_Recv, and 

MPI_Bcast functions for sharing data. 

Given the information that was presented earlier in Table 6, one could make 

certain predictions about the expected performance of the four systems tested with PMB. 

One such prediction might be that the AFIT NOW would produce the greatest throughput 

since its maximum theoretical throughput is three to twelve times greater than that of the 

other parallel platforms. Of course, as is shown in the sections that follow, theoretical 

performance is not always a good measure of the true capabilities of a parallel system. 

59 



5.2.3.1 PingPong 

The PingPong benchmark measures the startup and throughput of a single 

message in a network. It does this by sending a message back and forth between two 

processors and measuring the elapsed time (At). The startup time (ts) is then reported as 

At/2 jisecs. Using the message size (X), the channel throughput (p) for PingPong is 

calculated as follows: 

P = X 11.048576 / ts Equation 5: PingPong Channel Throughput 

Both of these parameters are used in the sections that follow to analyze the 

performance of ABC-Linux, ABC-NT, the AFIT NOW, and the MSRC's IBM SP2. 

5.2.3.1.1 Startup Time 

The startup times for each of the parallel platforms in this experiment are shown 

in Figure 15. All of the Pallas benchmarks use message sizes ranging from zero bytes to 

four MB. Since there was no appreciable change in startup times from zero to 256 bytes 

for this experiment, the values for message sizes less than 256 bytes are not shown in this 

chart to enhance its readability. 

60 



PingPong Benchmarks 
1.0E+06 

1.0E+00 

$> ^   *  «*•   * #■ # & ^^^^ & & & 

Number of Bytes 

-*-ABC-NT (MPI-Pro) -A BO Linux -«—NOW SR2 

Figure 15: Message Startup Time on ABC, AFITNOW, and SP2 

From this chart, we can see that the SP2 clearly has the lowest startup time 

throughout the range of message sizes. The differences in startup time for the other 

platforms is close, with ABC leading the AFIT NOW initially for a 256 byte message 

size. These differences disappear as the message size increases to 4MB. The erratic 

behavior of the ABC-Linux platform as the message size changes from 4K to 64K bytes 

is caused by a problem with the TCP/IP stack on the Linux kernel used in these 

experiments.[NIST] This problem is discussed in more detail in the next section. 

Since the primary focus of this section is a comparison of the NT and Linux 

cluster, a closer look at the experimental results is necessary. Figure 16 shows the startup 

times for the two clusters as the message size increases from 256 to 4096 bytes, the point 

at which the erratic behavior of Linux begins. This range of message sizes is fairly 

representative of the majority of messages sent by the cGRaCCE algorithm. The results 

61 



indicate that the Linux cluster has a slightly lower startup time for messages than the NT 

cluster which leads to a higher throughput as shown in the next section. 

PingPong Benchmarks 

1.0E+03 

(11 

9.0E+02 
8.0E+02 

V) 
3 7.0E+02 

to 6.0E+02 
E 5.0E+02 

4.0E+02 
3 3.0E+02 
CD 
4-> 2.0E+02 
UJ 

1.0E+02 
0.0E+00 

256 512 1k 2k 4k 

Number of Bytes 

8k 

ABC-NT (MPI-Pro) —♦—ABC-Linux 

Figure 16: Startup Time for Linux and NT cluster 

5.2.3.1.2 Channel Throughput 

Figure 17 shows the measured channel throughput for each of the parallel 

platforms. As with the startup times, the change in throughput for message sizes between 

zero and 256KB is negligible and is not shown. 

PingPong Benchmarks 

Message Size (Bytes) 

ABC-NT (MPI-Pro) - ABC-Linux -x- NOW -*— SP2 

Figure 17: Channel Throughput - PingPong Benchmark 

62 



Once again, the SP2 outperforms the other platforms by a significant margin. As 

was mentioned at the beginning of Section 5.2.3, theoretically the AFIT NOW would be 

expected to have a much higher throughput than the SP2. This obviously is not the case 

and the reasons for this lack of performance can be found in [Gindha97]. Gindhardt 

explains how the network interface on the AFIT NOW's workstations is connected to the 

I/O bus, known as the SBus. This bus has an effective throughput of 23.9 MBps and thus 

becomes a bottleneck for the NIC. Gindhardt also points out the inefficiencies in using 

TCP/IP as the messaging layer for Myrinet. The latency with TCP/IP is at least an order 

of magnitude higher than with other "leaner" messaging layers such as Illinois Fast 

Messages (FM),[Pakin95] Berkeley Active Messages (AM),[vonEic92] and MSU's Bulldog 

Messages (BDM).[Henley97] 

The same erratic behavior discovered in the startup time for the Linux cluster was 

again demonstrated in the throughput performance for messages ranging from 4KB to 

64KB. This behavior is the result of a bug in the TCP stack for Linux kernels older than 

version 2.1.100. A full description of the bug, which is caused by delayed 

acknowledgements of partial packets, can be found at [NIST], along with a recommended 

solution. At the time of this writing, the fix had not yet been applied to the ABC-Linux 

cluster. 

For an accurate analysis of the differences in performance of the Linux and NT 

clusters, it is once again necessary to take a closer look at the results of the experiment. 

63 



Figure 18 shows a more detailed chart of the throughput for the NT and Linux clusters. 

The TCP bug with Linux makes it difficult to compare the two systems; however, it does 

appear that for message sizes of 4K and below, Linux produces a slightly higher 

throughput. This comparison is analyzed further in the next section. 

12 

_. 10 
(A 

I 6 

1 4 c 
£ n 

PingPong Benchmarks 
Channel Throughput 

f^**t*&af*"——^—*''*B&c~*~ 

0     V««™™^!«'««»^^ 

256  512    1k    2k    4k     8k    16k   32k   64k 128k 256k 512k  1M    2M    4M 

Message Size (Bytes) 

ABC-NT(MR-Pro) -♦—ABC-Linux 

Figure 18: Channel Throughput for ABC-NT and ABC-Linux 

5.2.3.2 Sendrecv 

The Sendrecv benchmark, as the name implies, tests the performance of the 

MPI_Sendrecv function on a parallel system. This is a blocking function and is basically 

a concatenation of the MPI_Send and MPI_Recv functions. The Sendrecv benchmark 

organizes the processes into a periodic communication chain in which each node sends to 

the right and receives from the left neighbor in the chain.[Pallas] Since a particular process 

sends and receives X bytes in time At, the throughput is calculated as: 

p = 2XI 1.048576 I At Equation 6: Throughput - Sendrecv 

64 



The chart in Figure 19 again shows the SP2 outperforming the other systems by a 

significant margin. The AFIT NOW performed very poorly on this benchmark, which 

shows that high bandwidth is not necessarily effective without a corresponding low 

latency. The ABC-NT performed better than expected, outperforming the ABC-Linux 

cluster and the AFIT NOW for most message sizes. 

Sendrecv Benchmark - Throughput 

256   512     1k     2k     4k     8k    16k   32k   64k  128k 256k 

Message Size (Bytes) 

-»— ABC-NT (MR-Pro)    *    ABC-Linux ■NOW SP2 

Figure 19: Measured throughput for Sendrecv Benchmark 

5.2.3.3 Beast 

This benchmark measures the performance of the MPI_Bcast function. This 

function is used in cGRaCCE to distribute all of the data read in from the data files to 

each of the participating processors. The Beast benchmark does not return a throughput 

value for MPI_Bcast - only bare timings are reported. A root process, which is changed 

cyclically, broadcasts an X byte message to each of the other processes. The results for 

this benchmark are shown in Figure 20. 

65 



Beast Benchmark 
2.0E+03 i 

_ 1.5E+03 

3 1.0E+03 
a> 
E 
P   5.0E+02 

O.OE+00 -i 

i > JK *—-—w *—""■'■■ <i'i 
* x x——■* * * jK        "IK 

4 8        16       32       64      128    256     512      1k 

Message Size (Bytes) 

-ABC-NT (MPI-Pro)          ABC-Linux -K— NOW -a—SR2 

Figure 20: Timing for Beast benchmark 

Again, it is no surprise that the SP2 outperforms the other platforms; however, the 

performance of ABC-NT to that of ABC-Linux and the AFIT NOW is surprising. It 

appears from these results that the negative effects of both ~ the TCP bug in Linux and 

the high TCP/IP latency on the AFIT NOW's Myrinet network — are compounded by 

message broadcasts. In the next section, we show how these results and those previously 

discussed affect the performance of a real world application on these platforms. 

5.2.4 Run Time Performance ofcGRaCCE 

As was mentioned in Section 4.1, the run time of a parallel algorithm is the time 

that elapses from the moment that a parallel program begins execution to the last 

processor finishes executing. For comparing computing platforms, run time is the best 

metric, since the time required to finish executing a program is normally the most visible 

and important parameter to the end user. In this section, we analyze the run time of 

cGRaCCE on each of the parallel systems using the TH513 and checker data sets. These 

results are representative of those observed with the other three data sets. 

66 



Before presenting the results, it is necessary to provide more info on the TH513 

and checker data sets and a brief summary of what we've found thus far with the PMB 

suite. This information, which is presented in Table 8 and Table 9, should be very useful 

in our analysis of cGRaCCE's run time performance. 

Data Set 
Name 

Integer 
Ops 

FP Ops Max Msg 
Size (KB) 

Total Shared 
Data (KB) 

Max % 
Comm 

A ve Run 
Time (sec) 

Checker 
TH513 

6,563,800 
285,300 

42,564,100 
2,442,800 

6.77 
3.12 

23.28 
13.23 

0.34 
7.80 

517 ±41.7 
38 ±0.67 

Table 8: Measured statistics for Checker and TH513 data sets 

Throughput4 A verage* Beast" Level I 
Parallel SPECfp95 SPECint95 PingPong Sendrecv Startup Time Cache 
System (Mlips) (MBps) Time (usec) (usec) (KB) 

ABC-NT 12.4 15.3 7.62 11.77 568.91 326.01 16/16 
ABC-Linux 12.47 15.3 7.18 10.19 544.34 1858.2 16/16 
AFITNOW 9.06 6.26 7.40 8.10 738.49 1290.31 16/16 
MSRCSP2 17.6 6.17 16.58 26.07 235.58 148.12 32/128 

Table 9: Performance data for test systems 

Based on the information in these tables, we can make the following observations: 

• The SP2 has the highest floating point performance - approximately 40% 

greater than ABC and 95% greater than the AFITNOW. 

• The ABC has the highest integer performance - approximately 144% greater 

than the AFITNOW and 148% greater than the SP2. 

Measured for 8k message sizes or smaller - all messages sent out by cGRaCCE were smaller than 8k. 
5 Measured for 4k message size - average size for messages sent out by cGRaCCE. 
6 Measured at 512 byte message size - this is the largest message size within the range used by cGRaCCE for which 

Linux had a stable value (i.e. unaffected by TCP bug) 
7 No SPEC benchmark data were available for the 400 MHz PII running Linux; however, results for this processor with 

other UNIX operating systems indicated that the processor performance should be very close to the results for NT. 

67 



• The SP2 had the highest throughput for the PingPong benchmark - 

approximately 125% greater than the other platforms, which were all roughly 

equivalent. 

• The SP2 had the highest throughput for the Sendrecv benchmark - 

approximately 120% greater than ABC-NT, 155% greater than ABC-Linux, 

and 220% greater than the AFITNOW. 

• The SP2 had the lowest startup time - approximately 43% of ABC-Linux's, 

41% of ABC-NT's, and32% of the AFIT NOW s startup times. 

• The SP2 had the lowest Beast time - 45% of ABC-NTs, 11% of the AFIT 

NOW's, and 8% of ABC-Linux's Beast time. 

• The communication overhead of the TH513 data set is approximately 23 times 

that of the Checker data set. 

• The total data size for the Checker data set (23.28KB) is too large to fit in the 

LI cache of all of the parallel systems tested, except the SP2. 

With these observations in mind, let us now look at the run time results for 

cGRaCCE shown in Figure 21. Despite the SP2's superiority in network throughput, 

latency, startup time, broadcast performance, and floating point operations, it had the 

worst performance for all trials, with the exception of the one-processor run of the 

checker data set, where it barely outperformed the AFIT NOW. This exception was 

apparently due to the SP2's larger LI data cache, which could accommodate the entire 

checker data set. It can only be deduced that the slower processor (135MHz) in the SP2 

was no match for the faster processors in the AFIT NOW and ABC clusters. The lower 

68 



communication overhead of the SP2, however, was very noticeable, especially for the 

TH513 experiment. In this experiment, the performance gap between the SP2 and the 

other platforms steadily decreases as the number of processors is increased from one to 

five. This is, of course, due to the lower rate of increase in the communication overhead 

for the SP2, as compared to the other systems. 

TH513 Performance 

12 3 4 

Number of Processors 

-ABC-NT ABC-LirxK -AFIT NCW -SP2 

Checker Performance 
800 

700 

600 

500 

400 

300 

200 

100 

1 2 
Number of Processors 

-ABC-NT ■ABC-LlrxK -AFIT NCW • -SP2 

Figure 21: Run Time performance ofcGRaCCE 

The ABC-NT cluster outperformed all of the other systems for all data sets. The 

large difference in run times between ABC-NT and ABC-Linux with one processor using 

the checker data set indicate that the compiler optimizations of g++ on Linux were not as 

effective as those of MS Visual C++ on NT. Information discovered after these 

experiments were completed revealed that the particular version of g++ (2.7.2.3) used to 

compile cGRaCCE on Linux has not been optimized for the Pentium II processor. This 

may account for some of the difference in performance. An optimized version of GNU 

gcc/g++, known as Pentium GCC (PGCC) is available for free download from the 

Internet at [PGCC] and is recommended for use in future experiments with C++ code on 

Linux. 

69 



5.2.5 Price-Performance Evaluation 

In this section, the estimated costs-per-node of the AFIT NOW, MSRC's IBM 

SP2, and ABC cluster are used for a rough price-performance analysis. A distinction is 

not made between the ABC-NT and ABC-Linux cluster in this section because they use 

the same hardware and there is essentially no cost difference. One might argue that the 

Linux kernel is free and therefore the ABC-Linux cluster must be less expensive than the 

ABC-NT cluster. This, however, is not the case, as the computers used in this cluster, 

like most PCs sold today, came with a choice of Windows NT or Windows 95/98 

preloaded. These costs are then applicable to both systems, regardless of whether the 

system is booted under Linux or NT. Furthermore, recent announcements by Compaq, 

Gateway, and other PC manufacturers to offer Linux as a preinstalled O/S on their 

computers don't indicate any price savings for choosing this option. 

The purpose of this section is to determine the price-performance ratio of the 

ABC, SP2, and AFIT NOW. This comparison does not attempt to determine the 

maximum cost-performance capabilities of each of these systems. This issue has been 

addressed by other researchers such as [Sterli98], where the author describes Beowulf 

systems that have achieved $30/Mflop sustained price-performance rates. [Anders95] 

presented some theoretical price-performance values for a NOW and comparable MPP of 

approximately $2900/Mflop and $12,700/Mflop, respectively, but these figures are 

somewhat dated. Algorithms such as cGRaCCE are far too complex to be used for this 

type of benchmarking. Therefore, in order to avoid any confusion over the data presented 

70 



here, the cost-performance figures are only presented as ratios with ABC serving as the 

benchmark system with a rating of one. Ratings lower than one indicate that a system 

had a lower price-performance value than ABC and higher ratings indicate the price- 

performance was greater. These ratings are presented in Table 10. 

Parallel 
System 

Original 
System Cost 

Number Depreciated 
of Nodes Cost/Node* 

Price- 
Performance 

\th513) 

Price- 
Performance 

(checker) 

ABC 
AFIT NOW 

IBM SP2 

$27,700 
$104,000 

$10M9 

12        $1538.89 
6         $5135.80 

256       $7716.05 

1 
0.133 
0.057 

1 
0.135 
0.086 

Table 10: Price-performance for ABC, AFIT NOW, & SP2 

In this table, two separate ratings are presented based on the two data sets 

evaluated. In both cases, the ABC has a clear advantage in the price-performance 

comparison by a factor of seven or higher. In [Bakerm98], the author also experienced 

similar results when comparing the performance of two dual processor 200 MHz Solaris 

workstations with that of two dual processor 200 MHz Pentium NT workstations. 

5.2.6 Conclusions - Linux vs. NT Cluster 

In the five previous sections, we compared the performance of an NT cluster, a 

Linux cluster, a NOW, and an MPP. The following general conclusions about the 

differences between PoPCs, NOWs, and MPPs can be drawn from this comparison: 

This value is based on average annual U.S. inflation rate of 3.6% and an expected effective life span of four years for 
computer systems due to technological advances, yielding a total depreciation of approximately 33%/yr. 

9 Although requested multiple times, costs for the MSRC's SP2 were not provided. This figure is based on the cost of a 
similarly equipped Paragon sold the same year as listed by [Anders95]. 

71 



• The performance ofPoPCs is very competitive when compared to NOWs and 

MPPs. 

• The rapid technological advances in PC technology and lower commercial 

costs give PoPCs a clear price-performance advantage over NOWs and 

MPPs. 

Due to the aforementioned TCP bug in the Linux kernel, it is difficult to make 

general conclusions about the performance differences between NT and Linux clusters. 

The original hypothesis was that the performance of the NT cluster would be slightly 

lower than that of the Linux cluster. This hypothesis was based on the assumption that a 

Graphical User Interface (GUI) based O/S, such as NT, would naturally have a higher 

overhead, and thus produce a lower performance than a leaner O/S, such as Linux. This, 

however, did not prove to be the case. In fact, the NT cluster outperformed the Linux 

cluster for all tests with the exception of the message startup time for a small range of 

message sizes and the PingPong throughput, also for a small range of values. These 

results, as previously mentioned, may be due in part to the Linux TCP bug and more 

effective code optimizations on the NT system. In general, however, it is safe to 

conclude that: 

• Clusters of NT workstations are viable alternatives to Linux clusters for 

parallel and distributed computation. 

• NT clusters can perform as well or better than Linux clusters for 

computationally intensive algorithms. 

• Differences in communication overhead for Linux and NT clusters are small 

and for the most part insignificant. 

72 



5.3 Performance of MPI Tools on NT 

In this section the data collected from the Pallas benchmarks and cGRaCCE trials, 

are again used to make performance comparisons. This time the comparison is between 

the different MPI implementations for NT: MPI/Pro 1.2.3 and PaTENT MPI 4.09. As 

mentioned in Section 2.3.3.3, HPVM which is the other major MPI tool for NT, is not 

evaluated in this research, primarily due to the expense of the queuing software required 

to use the Java-based front-end and the complexity of using this software without the 

front-end. According to [Baker98], the performance of HPVM on Ethernet is very poor 

compared to the other MPI tools for NT. This is primarily due to the fact that HPVM 

was designed for Myrinet networks.[Chien97] 

5.3.1 Pallas Benchmarks 

As with the comparison of the different parallel platforms in Section 5.2, the 

PingPong, Sendrecv, and Beast benchmarks are used to compare these tools. These 

benchmarks had to be run multiple times with different versions of both MPI/Pro and 

PaTENT because of bugs in the software that surfaced under the heavy communication 

loads of the Pallas benchmarks. The technical support teams at MSTI and Genias used 

data from the experiments in this research to resolve some of these problems. Even so, a 

complete error-free run of the PMB suite with more than four processors was not 

possible. Fortunately, complete runs of the three benchmarks used for this evaluation 

with four processors were successful. 

73 



Information discovered after the experiments were complete indicates that at least 

part of the problem experienced in running these benchmarks may have been caused by 

the limitations of the switch used on the ABC system. According to the User's Manual 

for the Intel Express 510T switch, the maximum aggregate network bandwidth of this 

switch is 800 Mbps. When running the PMB suite with four processors, the maximum 

channel throughput produced was approximately 142.3 Mbps. Assuming an equal 

throughput on all channels, this is a total network bandwidth of approximately 569 

MBps. Using six processors and assuming the same throughput, the total network 

bandwidth would reach 854 Mbps, exceeding the maximum capacity of the switch. 

5.3.1.1 PingPong 

5.3.1.1.1 Startup Time 

As can be seen in Figure 22, MPI/Pro has a lower startup time for small message 

sizes. The difference is approximately 40% ± 2% for messages sizes up to 128 bytes and 

then decreases rapidly until it is completely negligible at 256k and above. 

1000000 

100000 

^ 10000 

Jj,  1000 

I   100 
OL 
=    10 

95    1 

PingPong Benchmark 

$$$$:§i^§:;:§:§^ 

::i::i:::i:iii:;^^Ä$$iiiiiiiii;ii£:8&^ 

             ,,..*■«•■    '" 

°   *   *   # & <p   <*•   #■ # ^ <p   & 
Number of Bytes 

-RaTENT4.09     &     MPI-Pro 1.2.3 

Figure 22: Startup Time for PingPong Benchmark 

74 



5.3.1.1.2 Channel Throughput 

As shown in Figure 23, the results of the throughput measurements for the 

PingPong benchmark were somewhat unstable for MPI/Pro and failed to produce a clear 

indication of which tool was superior in channel throughput performance. These results 

are most likely caused by unresolved bugs in the MPI/Pro code. Even so, the results do 

indicate that the throughput of both packages is very similar. 

PingPong Benchmark 

(0 

& 
2 

■o 
i 
■a c 

12 

10 

8 

6 

4 

tiri*^*™***^*^^?^.. ■■w^f-^gff^l]^rr,T^f,^ 

*r*Ää-i«4Y"""""F:ÄÄÄ"4?i' 

$> <f ^  *" «fr   * #• N* # ^^Jt^ & <t & 
Message Size (Bytes) 

-m— PaTENT 4.09     MR-Ro 1.2.3 

Figure 23: Channel Throughput for PingPong Benchmark 

5.3.1.2 Sendrecv 

As with the PingPong throughput results, the Sendrecv results, which are 

presented in Figure 24, showed very erratic behavior for MPI/Pro. Unlike PingPong, 

however, the PaTENT performance for Sendrecv began to drop significantly for message 

sizes larger than 64k, while MPI/Pro continued to experience increases in throughput up 

75 



to a IM message size. Again, we are unable to make conclusions about the performance 

difference between these two packages based upon the observed results. 

on 

Sendrecv Benchmark 

Th
ro

ug
hp

ut
 (

M
B

ps
) 

D
  
  
 0

1 
  

  
o

   
   

m
  

  
 c

 

m   m—»■•■••m      *           »v. 
A «*f#.„r     •■Xim       *                                         ^ 

***&** 

«? $ 

Message Size (Bytes) 

—♦— PaTEMT 4.09 -»— MR-Pro 1.2.3 

Figure 24: Channel Throughput for Sendrecv Benchmark 

5.3.1.3 Beast 

The results for the Beast benchmark, shown in Figure 26, are more stable than the 

results of the previous two sections. Once again, MPI/Pro starts out with a slight 

advantage of about 40%. This advantage continues up to a 512 byte message size and 

then rapidly decreases to an insignificant amount, except for a jump at 128k. 

76 



Beast Benchmark 
1.0E+07 

1.0E+06 

_ 1.0E+05 o 

|   1.0E+04 

»   1.0E+03 

f-   1.0E+02 

1.0E+01 

1.0E+00 

m 

tr-**^****^ 

**w^ 
m***^**^ i=r-*=*-*=*^ 

Message Size (Bytes) 

o* 

■ PaTENT 4.09- •MR-Pro 1.2.3 

Figure 25: Timing for Beast Benchmark 

5.3.2 Run Time Performance ofcGRaCCE 

Because of its low communication overhead, the cGRaCCE algorithm was not 

effective in measuring the performance differences between the PaTENT and MPI/Pro 

parallel communication libraries. The results of trials with the cGRaCCE algorithm for 

both of these tools are shown in Figure 26. 

Checker Performance 

350 

300 

|  250 

H 
8   200 
x 

UJ 

150 
1 2 

Number of Processors 

■PaTENT 4.08 Mpi/Pro 1.2.3 

TH513 Performance 
20 

Q)   IO 

§10 

X 
HI 

2 3 4 

Number of Processors 

•PaTENT 4.08 ■Mpi/Pro 1.2.3 

Figure 26: Run Time Performance ofcGRaCCE with MPI/Pro and PaTENT 

77 



As shown in Figure 26, the performance differences appear to be negligible. A 

"test of means", using the ANOVA method, confirms this assumption for the checker 

data set and for the TH513 data set with up to three processors. The results of these tests 

are presented in Table 11 and Table 12. In both of these tables, the test statistic for the 

samples (i.e. MPI tools) does not fall in the critical region (F < F crit). Therefore, the 

null hypothesis, Ho, that the means are equal, must be accepted. 

Anova: Two-Factor W ith  Replication 

SUMMARY 1 2   Total 
PaTENT 

Count 30 30 60 
Sum 9664.8 4800.7 14465.5 
Average 322.16 160.0233 241.0917 
Variance 139.1308 31.14392 6767.16 

M P HP ro 
Count 30 30 60 
Sum 9687.5 4846.3 14533.8 
Average 322.9167 161.5433 242.23 
Variance 188.5607 33.34254 6729.754 

Total 
Count 60 60 
Sum 19352.3 9647 
Average 322.5383 160.7833 
Variance 161.2143 32.28412 

ANOVA 
Sou rce of V ariation SS df MS F P -value F crit 
Sample 38.87408 1 38.87408     0.396494     0.530144     3.922878 
Columns 784940.4 1 784940.4     8005.961      7.1E-109     3.922878 
Interaction 4.370083 1 4.370083     0.044572     0.833163     3.922878 
Within 11373.16 116 98.04449 

Total 796356.8 119 

Table 11: ANOVA values for ABC-NT with checker data set 

78 



A nova: Two-Factor W it h  Replication 3  Processors 

SUMMARY 1 2 3  Total 
PaTENT   

Count 30 30 30 90 
Sum 553.32 364.4 337.53 1255.25 
Average 18.444 12.14667 11.251 13.94722 
Variance 0.000928 0.00174 0.001071 10.36053 

M P UP ro   
Count 30 30 30                     90 
Sum 553.27 365.05 338.04        1256.36 
Average 18.44233 12.16833 11.268      13.95956 
Variance 0.001225 0.007263 0.001113     10.30029 

Total   
Count 60 60 60 
Sum 1 1 06.59 729.45 675.57 
Average 18.44317 12.1575 11.2595 
Variance 0.001059 0.004544 0.001147 

ANO V A 
Source of V aria tio n SS df MS F P-value F crit 

Sample 0.006845 1 0.006845 3.078472     0.081095     3.895451 
Columns 1838.422 2 919.2108 413406.1                         0     3.047901 
Interaction 0.004573 2 0.002287 1.028406     0.359739     3.047901 
Within 0.38689 174 0.002224 

Total 1838.82 179                                                                      

Table 12: ANOVA values for ABC-NT, TH513 data set, 3-processors 

5.3.3 Conclusions - Performance ofMPI Tools for NT 

The results of this set of experiments produced no discernable performance 

difference between the two MPI tools for NT, other than a slight advantage in message 

startup times and broadcast performance by MPl/Pro for small message sizes. Errors 

encountered while running the PMB suite however indicate that there may still be 

unresolved problems with both packages, especially with MPI/Pro. 

5.4 Parallel GRaCCE (cGRaCCE) Performance 

In this section, the results of multiple trials of the cGRaCCE algorithm are used to 

analyze its speedup, efficiency, and isoefficiency.   Discussed are the various factors 

79 



contributing to the observed sublinear speedup and low efficiency of this algorithm in the 

majority of these trials. These factors include communication and VO overhead, load 

balancing, and the effects of instruction and data caching. This section ends with a brief 

description of the results of the ANOVA tests used to validate the experimental results 

and a summary of the conclusions made from this analysis. 

5.4.1 cGRaCCE Complexity 

A good way of estimating the performance and scalability of an algorithm is by 

calculating the algorithm's complexity. This can be very difficult with stochastic 

algorithms. For instance, the number of computations performed by the cGRaCCE 

algorithm depends on the following factors: 

1. Number of classes (c) 

2. Number of boundary points evaluated per class (b) 

3. Number of vectors (data points) in data set (d) 

4. Number of features/dimensions (f) 

5. Size of GA population (p) 

6. Length of GA chromosome (L) 

7. Number of generations per GA search (g) 

The number of classes, data points, and features are always known and the size of 

the GA population is generally kept at a fixed value (100 for this research). The length of 

the GA chromosome varies but is bounded by the total number of partitions. The number 

of boundary points evaluated per class also varies and can not be determined based solely 

on the number of boundary points in the data set. It is dependent on the number of 

boundary points per class, the dispersion of the data in that class, and the probability that 

80 



a boundary point will be enclosed in a region by a preceding boundary point evaluation. 

The equation for this number would be very difficult to derive, if at all possible. An 

overly conservative estimate of this number would be to use the total number of boundary 

points. The number of generations per GA search is also not constant, but is limited to 

twice the minimum number of generations. (See Section 3.3) This parameter (mingeri) is 

provided by the user at run time. For this research, mingen is used to control the problem 

size for each data set and is set to 10, 100, and 1000. Therefore, with this information in 

mind, our complexity equation might look as follows: 

Complexity - O(cBpgPf) Equation 7: cGRaCCE Complexity 

In this equation, B is the total number of boundary points and P is the total 

number of partitions/boundaries. Although the number of data points does affect the 

complexity, it is not used in this formula because the overall effect is somewhat 

complicated to determine and trivial in comparison to other factors. Using this equation, 

the anticipated total number of computations for each of the five data sets used in our 

experiments are estimated in Table 13. 

Data Set       Classes       liouiulary      (7/1 Pop Max dens      Partitions       Dims       Total Cales 
Name Points 

Checker 2 105 100 20 66 2 55,440,000 
TH513 5 61 100 20 48 2 58,560,000 
Glass 4 23 100 20 25 4 18,400,000 
Wine 3 

2 
21 
17 

100 
100 

20 
20 

17 
11 

3 6,426,000 
Cancer 9 6,732,000 

Table 13: Estimated number of computations performed by cGRaCCE 

Table 14 provides a look at some rough measurements taken during execution of 

cGRaCCE with the five data sets and unfortunately shows that our complexity algorithm 

does not provide a very tight upper bound for all data sets. Although this equation 

provides a reasonable upper bound for the checker data set, the estimated number of 

81 



operations for the other data sets are between six and twenty-two times larger than the 

measured values. This, again, has to do with the stochastic nature of the algorithm. With 

one data set the algorithm may evaluate ten percent of the boundary points in all classes, 

whereas, with a different data set, ninety percent of the boundary points may be 

evaluated. A detailed analysis of the complexity of the original GRaCCE algorithm can 

be found in [Marmel99]. 

Data Set Name Integer Ops i<r ops Total Ops 
Checker 6,563,800 42,564,100 49,127,900 
TH513 285,300 2,442,800 2,728,100 
Glass 231,900 1,307,400 1,539,300 
Wine 161,700 858,200 1,019,900 
Cancer 116,300 537,300 653,600 

Table 14: Actual number of computations performed by cGRaCCE 

5.4.2 Speedup 

As was pointed out in Section 4.1.1, speedup is the ratio of the parallel and serial 

run times of an algorithm. Figure 27 below show the speedup of cGRaCCE for the 

checker and TH513 data sets. These data sets were chosen for this discussion because the 

first produced a slight superlinear speedup, whereas the other showed very little speedup. 

The speedup of the other three data sets used in these experiments fell somewhere in 

between. The primary factors contributing to both of these speedups are discussed in the 

sections that follow. 

82 



Checker Speedup 

2.5 

a 2 

|l.5 

*   1 

0.5 

Number of Processors 

IP&TENT   «MPI/Pro   rj Linux   EAFITNOW   ■ SR2 

TH513 Speedup 

2 3 4 5 

Number of Processors 

m PaTENT ■ MR/Pro m Linux m AFfT NOW ■ SP2 

Figure 27: Speedup for Checker and TH513 data sets 

5.4.2.1 Load Balance 

To gain the maximum speedup, an algorithm must distribute the workload evenly 

among all of the computing nodes. This is known as load balancing. As was mentioned 

in Section 3.3.4, the two major categories of load balancing schemes are static and 

dynamic. It was decided that a static load balancing scheme would be used for 

cGRaCCE. This involved distributing out each class evaluation to a separate processor. 

This scheme required that data only be passed at the beginning (distribution of the data to 

each process) and at the end (gathering of results from each process) of program 

execution. Thus, no interprocess communication is required during the parallel execution 

of cGRaCCE and the communication overhead is very low for average or larger problem 

sizes. 

This method, although successful in reducing communication overhead, resulted 

in large load imbalances for certain data sets. In these data sets, the number of boundary 

points and/or partitions evaluated for some classes is much larger than for others. The 

load balance for the checker and TH513 data sets are shown in Figure 28.  As expected 

83 



from the speed up results shown earlier, the load was almost evenly balanced with the 

checker data set. The TH513 data set, on the other hand, produced a very unbalanced 

workload with process one completing its work in almost a third of the time required for 

process four. Table 15 shows the division of boundary points and partitions evaluated for 

each class in the checker and TH513 data sets. As expected the distribution of work for 

checker is balanced, but, not so for TH513. One interesting observation from the charts 

and table is the fact that although processor five has the smallest work load for the TH513 

data set, it took twice as long to execute as processor one, which had a slightly larger 

workload. This observation hints at other contributing factors, one of which is discussed 

in the next section. 

Checker Load Balance 
2 Processors 

200 

150 

100 

50 

0 
1000 

Generations 

3 Proc 1 

|Proc2 

TH513 Load Balance 
5 Processors 

1000 
Generations 

E|Proc 1 

■ Proc 2 

□ Proc 3 

H Proc 4 

Q Proc 5 

Figure 28: Load balance of cGRaCCE algorithm 

Data Set Name Class Number Bpts/Class BndslClass 
Checker 1 25 52 

2 25 52 
TH513 1 15 

2 23 
3 21 
4 23 
5 14 

Table 15: Number ofbpts and bnds evaluated per class 

84 



5.4.2.2 Cache Advantage 

The load imbalance discussed in the previous section provided some insight into 

the sublinear speedup of cGRaCCE for the TH513 data set, but a more in depth analysis 

is necessary to determine other contributing factors. One such factor discovered by this 

analysis was the cache advantage experienced by running multiple iterations of the 

algorithm for the serial execution and for parallel executions in which the number of 

processors was less than the number of classes in the data set. For example, the Dell PCs 

used in these experiments each have on-chip Level 1 (LI) instruction and data caches. 

Whenever, the TH513 data set is evaluated using one processor, the five classes are 

evaluated in five iterations of the outer loop of the program. After the first iteration, the 

instructions have all been loaded in the instruction cache and the data have been loaded in 

the data cache. Hence, subsequent accesses to either are very fast. The effects of this 

data and instruction caching are shown in Figure 29. 

TH513 Loop Variance -1000 generations 

m 1 Procs 

■ 2 Procs 

D 3 Procs 

m 4 Procs 

■ 5 Procs 

2 3 4 

Class Number 

Figure 29: Cache advantage for TH513 data set 

In this figure, the execution time for the evaluation of class 1 remains the same for 

one to five processors. This is because class 1 is always evaluated first and hence can not 

85 



take advantage of cached instructions or data. Class 5, on the other hand, is evaluated 

last for one to four processors and uses cached instructions and data each time. When the 

number of processors is increased to five, this cache advantage is no longer available for 

class 5 and the execution time is approximately doubled. 

Because of the negative effect caching has on the speedup of parallel programs in 

which multiple iterations of the main code are run by individual processors, it is a 

common practice, to discard the first iteration of each loop. This is not a problem in 

programs where the loop consists of hundreds or thousands of iterations and comprises 

only a small part of the overall solution. This unfortunately is not the case with 

cGRaCCE. Each loop is an evaluation of an entire class and a major part of the overall 

solution. However, the effects of caching become less noticeable as the overall 

processing time increases. This is the reason that execution of cGRaCCE with the 

checker data set is not significantly effected by caching. Evaluation of the checker data 

set takes approximately twenty times longer than that of TH513 for the same number of 

processors and generations. Figure 30 shows the predicted speedup for TH513 if the 

cache advantage were ignored. When compared to Figure 27 shown earlier, it can be 

seen that the cache advantage is very significant, much more than load balancing, for 

small data sets. 

86 



TH513 Speedup 
Cache advantage ignored 

1 
4-   

§3 

1   2 - 
m 

Q.   '■ 

1   - 

0- w®% 

m 1000 Gens 

3 4 

Number of Processors 

Figure 30: Cache advantage ignored for TH513 data set 

We've looked at the primary factors affecting the sublinear speedup of cGRaCCE 

for the TH513 data set (coincidentally the speedup was also sublinear for the other three 

data sets tested), but what about the super linear speedup experienced with the checker 

data set. As was mentioned in Section 4.1.1, super linear speedup can usually be 

attributed to one of three primary factors as follows: 

1) A sub-optimal serial algorithm 

2) The stochastic nature of the algorithm such as a tree search in which multiple paths 

can be evaluated simultaneously to find the solution more rapidly 

3) Division of the program data into smaller units such that it fits into memory that was 

previously too small. 

In this particular case, the third factor applies. Table 16 shows the total size of the 

data that is passed to each processor for a particular data set. Table 17 shows the size of 

the Level 1 cache for each of the three systems used in this research. The data for all of 

the data sets, except checker, are small enough to fit into the LI data cache on all of the 

systems. Since the LI data cache on the SP2 is large enough to house the entire data set 

87 



for checker, superlinear speedup should not be observed. This is indeed the case as is 

shown in Figure 27. As for the other systems, although the entire data set is passed to 

each processor, only a portion of these data is used for the majority of the program 

execution. This portion apparently fits into the LI cache on the ABC and NOW. This 

allows faster access to the data and the evaluation of each class takes less time than on a 

single processor thus producing a super linear speedup. 

Data Set Name 
Checker 
TH513 
Glass 
Wine 
Cancer 

Total Message Size (KB) 
23.28 
13.23 
3.13 
2.52 
12.46 

Table 16: Size of data passed for each data set 

Processor 
Dell 400 MHz Pentium II (ABC) 
Sun 167 MHz UltraSPARC (NOW) 
IBM 135 MHz P2SC (SP2)  

Instruction/Data Cache Size (KB) 
16/16 
16/16 

32/128 

Table 17: Size of Level 1 cache 

5.4.2.3 Communication Overhead 

Although it has been noted that the chosen parallelization method for cGRaCCE 

significantly reduces the communication overhead, it can not be completely ignored. As 

with the majority of algorithms, the communication overhead for cGRaCCE increases as 

the number of processors are increased. This increase eventually leads to reduced 

performance and lower efficiency. This overhead is especially noticeable for smaller 

problem sizes, where the communication-to-computation ratio is high. In Figure 31 

below, the speedup for the TH513 data set levels out at four processors for each of the 

systems tested, with the exception of the SP2.    This is understandable since the 

88 



throughput, startup time, and latency on the SP2, according to the Pallas benchmark 

results discussed in Section 5.2, is better than that of the AFIT NOW or ABC clusters. 

3.1 
2.9 
2.7 

S- 2.5 
2.3 

a. 2 1 
CO   *•' 

1.9 
1.7 

1.5 

TH513 Speedup 

Number of Processors 

-POTENT -MPI/Pro Linux ■ -AFIT NOW- -SP2 

Figure 31: Effects of communication overhead on speedup 

5.4.3 Efficiency 

As was mentioned in Section 4.1.2, the efficiency of a parallel algorithm is a 

measure of the fraction of time for which a processor is busy doing useful work and is 

defined as the ratio of the speedup to the number of processors. Thus, as one would 

expect a small speedup indicates a low efficiency and a large speedup a high efficiency. 

With this in mind, the results of Figure 32 are no surprise. 

Checker Efficiency 

Number of Processors 

I PaTEMT ■ MPI/Pro B Linux ® AFIT NOW ■ SP2 

TH513 Efficiency 

3 4 5 
Number of Processors 

PaTBMT ■ MPI/Pro rj Linux m AFfT NOW ■ SP2 

Figure 32: cGRaCCE Efficiency with Checker and TH513 data sets 

89 



In this figure, results of cGRaCCE with the checker data set, which exhibited a 

superlinear speedup for all platforms except the SP2, show an efficiency of one or 

greater. With the TH513 data set, the efficiency is 20% to 50% lower than with the 

checker data set, again showing the side effects of the cache advantage, load imbalance, 

and higher communication overhead discussed in the last section. Figure 33 displays the 

efficiency that is expected if the cache advantages of loop iterations greater than one are 

ignored. This gives a good picture of the scalability of the cGRaCCE algorithm, which 

as shown in the chart below, is capable of efficiencies, ranging from 77% to 97% even 

with the rather heavy load imbalance of the TH513 data set. 

TH5 
Cache i 

13 Efficier 
idvantage ig 

cy 
nored 

* 0.8 
o 
§   0.6 

'£   0.4- 
03   0.2- 

-   !:!:!:!:!&!: 

2                  3                  4 5 

El 1000 Gens Nun nber of Pro« ;ess ors 

Figure 33: Predicted Efficiency with cache advantage ignored 

5.4.4 Isoefficiency 

In Section 4.1.3, we defined isoefficiency as "the rate at which the problem size 

must to increased to maintain a fixed efficiency." This value gives us a good indication 

of the scalability of an algorithm. Unfortunately, it is not always possible to determine 

the isoefficiency of an algorithm that is stochastic. That is, in a single trial, a particular 

problem size increase may maintain the same efficiency as the number of processors is 

90 



increased by one.   In a subsequent trial, the stochastic algorithm may converge to a 

solution faster even with the same problem size resulting in a higher efficiency. 

Another problem that is more specific to the cGRaCCE algorithm is the definition 

of the problem size. In the experiments with cGRaCCE, we varied the problem size by 

using data sets with varying numbers of data points, boundary points, partitions, features, 

and classes. We also varied the problem size by increasing the minimum number of 

generations for the GA search from ten to one thousand. We could have also changed the 

problem size by varying the size of the GA population, the mutation and crossover 

probabilities, the cluster purity level, the maximum number of partitions evaluated per 

boundary point, and many other parameters. Therefore, defining the problem size for 

cGRaCCE is within itself quite complex. 

Furthermore, to derive an effective isoefficiency function it is necessary to start 

with a valid complexity equation for the algorithm and as is explained in Section 5.4.1, 

this is very difficult, if not impossible, to derive for the cGRaCCE algorithm. Thus, with 

all of these factors in mind, a derivation of the isoefficiency function for cGRaCCE is not 

included. 

5.4.5 Statistical Validation 

As was described in Section 4.3, the ANOVA test was applied to each sample 

population with a 0.05 level of significance (95% C.I.). This test served two primary 

functions. First, it served to show that the data collected from the experiments was valid 

91 



for comparison. Second, it was used as a "test of means" to determine if the difference 

between two sample populations was of statistical significance. Some examples of the 

analysis of variance tables produced by these tests are shown in Appendix C. 

5.4.6 Conclusions - cGRaCCE Performance 

In this section, we have looked in detail at the results produced by several trials of 

the cGRaCCE algorithm with different sets of test data. For one of these data sets 

(checker), we experienced superlinear speedup, which was determined to be caused by 

the decomposition of the data into smaller segments, which fit into the LI cache of 

remote processors. For the remaining data sets, cGRaCCE exhibited low speedup and 

efficiency. A careful analysis of the results revealed the following contributing factors: 

1) unequal load balancing, 2) first-iteration caching, and 3) communication overhead. 

Because there is no interprocessor communication with cGRaCCE, other than the 

initial   data  distribution  and  the   final  collection  of results,   the  effects   of  the 

communication overhead proved to be marginal for all but the smallest problem sizes. 

Also, the effect of load imbalances observed for most data sets, although significant was 

determined to only be a minor contributor to the low speedup and efficiency. The major 

factor of the three was the first-iteration caching. It was pointed out that ignoring initial 

loop iterations in parallel programs is a common practice for more accurately determining 

the scalability of an algorithm. Since the amount of time to load data and instructions in 

the cache during the first iteration of a loop is marginal with large data sets where the 

number of loops is much greater than those normally found in test data, this practice is 

92 



completely valid. Therefore, by estimating the performance of cGRaCCE minus the 

effects of caching, we were able to realize efficiencies of greater than 75% for all tested 

data sets. Although these efficiencies fall short of the ideal, they show that even with 

unequal load balancing the cGRaCCE algorithm is capable of relatively good 

performance. The recommended next step in improving the cGRaCCE algorithm is to 

devise a dynamic load balancing scheme that more evenly distributes the work load 

among all of the processors without significantly increasing the communication 

overhead. 

93 



6     Conclusions/Recommendations 

6.1 Review 

Chapter 1 defines the objectives and goals of this research effort. Chapter 2 

provides appropriate background on parallel computing and data mining, including some 

of the general principles and current research. In Chapter 3, the problem domain and 

algorithm domain is discussed. Chapter 4 presents the experiment design and general 

methodology for completing this research. Using the results of the experiments described 

in Chapter 4, a detailed data analysis is presented in Chapter 5. This Chapter culminates 

the thesis research with a summary of the conclusions presented in Chapter 5, a 

discussion of the contributions of this effort, and recommendations for future research. 

6.2 Summary 

The conclusions for each of the three main objectives of this research are 

presented in Chapter 5. Those conclusions are summarized as: 

• The efficiency/performance of Linux and NT PoPCs is very competitive to that 

demonstrated by NOWs and MPPs. 

• The rapid technological advances in PC technology and lower commercial 

costs give PoPCs a clear price-performance advantage over NOWs and 

MPPs. 

• Clusters of NT workstations are viable alternatives to Linux clusters for 

parallel and distributed computation. 

• NT clusters can perform as well or better than Linux clusters for 

computationally intensive algorithms. 

• Differences in communication overhead for Linux and NT clusters are small 

and for the most part insignificant. 

94 



• The MPIIPro and PaTENT MPI communication libraries for Windows NT 

demonstrate no significant difference in performance in trials with up to six 

PCs. These tools are still relatively new and some bugs are still being worked 

out. 

• The parallel C++ version of the GRaCCE algorithm, known as cGRaCCE, 

achieves a significant efficiency/performance advantage over the original 

MatLab code. This advantage, although not precisely measured, is at least an 

order of magnitude based on results from runs with the same data sets using 

both algorithms. 

• The static load balancing scheme used by cGRaCCE results in a significant 

load imbalance for the majority of tested data sets. 

• Ignoring the effects of data and instructions caching, the cGRaCCE algorithm 

is capable of relatively high efficiencies (77%-97%) even with a significant 

load imbalance. 

• The communication overhead of the cGRaCCE algorithm is relatively trivial, 

averaging less than 2.3% of total execution time for all trials with a moderate 

workload of 1000 generations . 

6.3 Contributions 

This research has made several contributions to the field of Computer 

Science/Computer Engineering, particularly in the areas of parallel computing and data 

mining. Some of the specific contributions are outlined below: 

• Provides one of the first detailed comparisons of the performance of NT 

versus Linux clusters. By showing that NT clusters are viable alternatives to 

"free" UNIX-type clusters for parallel and distributed processing, a whole 

new door of opportunity is opening up to both academia and the commercial 

world where Windows NT has gained a strong foothold.   This is especially 

95 



significant to the Air Force in light of recent policies that define NT as the 

O/S of choice for all Air Force LAN servers and desktops. 

• Demonstrated that PoPCs are viable alternatives to Networks of Workstations 

and Massively Parallel Processors. This effort builds on the current PoPC 

research, such as NASA's Beowulf project, with the added twist of evaluating 

NT, as well as Linux clusters. Price-performance comparisons show that 

relatively high performance parallel computing can be attained at commodity 

prices, allowing even organizations with comparably small IT budgets to take 

advantage of the benefits of distributed processing. 

• Showed that MPI implementations for NT, although still somewhat immature, 

are capable of competitive performance when compared with similar MPI 

implementations for UNIX. This research also showed that the two primary 

MPI tools (MPI/Pro and PaTENT MPI) for NT are relatively equal in 

performance, allowing consumers some choice of which tool to use. 

• Provided the sponsor with parallel C+ + code implementing the major portion 

of the original GRaCCE algorithm. Although this algorithm as demonstrated 

is not the most efficient version possible, it is at least an order of magnitude 

faster that the original MatLab code. This algorithm provides the data mining 

community with an alternative to the traditional decision tree algorithms, 

which significantly reduces the complexity of the rule set for about the same 

accuracy and performance. 

96 



6.4 Proposals for Future Research 

This research provided useful insight into the parallel tools for NT clusters and 

potential of the GRaCCE algorithm on a parallel system. Nevertheless, there are several 

potential areas left unexplored which could contribute to this research effort. The 

following areas are recommended for future research: 

• Explore the use of an efficient dynamic load balancing algorithm for the 

parallel GRaCCE algorithm. The schemes outlined in [El-Rew94] are 

probable candidates if the algorithm is rewritten to run the boundary point 

searches in parallel rather than only the class searches. 

• Optimize the memory handling functions in the current parallel GRaCCE 

code to reduce communication time and memory usage. The converted C++ 

code for GRaCCE uses static memory allocation for the majority of the data 

structures used in this algorithm. Although this design decision proved 

sufficient for the test data used for this research, it limits the scalability of the 

algorithm. This constraint could be at least partially removed by using 

dynamic memory allocation for all data structures and freeing any memory 

when the data in it are no longer needed. 

• Investigate possible optimizations to reduce the overhead imposed by the 

Windows NT operating system. Although the comparison of NT and Linux 

clusters showed no significant disadvantage caused by NT's much larger O/S 

code, the possibility of gaining performance by reducing overhead still exists. 

Possible optimizations include:  1) running parallel programs without the 

97 



graphical user interface (Explorer) on NT, 2) optimizing the TCP/IP stack or 

installing one that is more efficient, and 3) shutting down or removing any 

non-critical services from NT. Optimizations dealing with real-time NT 

performance are discussed in [Timmer97]. 

• Investigate possible optimizations for the Linux environment. Two such 

optimizations are discussed in Chapter 5. First, the TCP bug needs to be 

corrected by either implementing the recommended fix [NIST] and recompiling 

the kernel or by upgrading the kernel to a version that is unaffected by this 

bug. Second, a C++ compiler that is optimized for the Pentium II 

environment, such as PGCC, needs to be loaded on the Linux system and used 

for all future C++ code. A third possible optimization would be to investigate 

the use of "leaner" faster messaging layers in lieu of TCP/IP. One such 

messaging layer that is currently available for Linux is the Illinois Fast 

Messages (FM).[Pakin95] 

• Investigate the use of threads for increased parallel performance with both 

NT and Linux. Since both of these operating systems support the use of 

threads, it may be possible to increase performance by distributing the 

workload assigned to a processor among multiple threads. This would be 

used in conjunction with message passing. 

98 



Appendix A: General Overview of Parallel Processing 

A.l     Introduction 

Whether it be transportation or communication, mankind has always bemoaned 

his "need for speed" in all that he has attempted to do. This is no different in the world of 

computing. Even as processors become faster and faster, the gap between the available 

and "needed" computing power is stretched by mankind's attempt to tackle increasingly 

complex problems. Parallel processing has made progress in narrowing this gap by 

utilizing the power of multiple processors to solve a single problem in parallel. 

One can find many illustrations of parallel processing in the real world. For 

instance, race car drivers in an attempt to minimize the time required for pit stops, utilize 

the services of a crew of personnel to simultaneously perform all necessary tasks such as 

changing tires, refueling, cleaning windshields, etc. If these tasks were performed 

serially by a single crewmember, there would be no need for the driver to re-enter the 

race, as he would be much too far behind to successfully compete. Likewise, in the 

world of computing, a particular problem often consists of a collection of independent 

tasks, which can be completed concurrently. This inherent "parallelism", as it is called, 

provides the driving force behind parallel computing. 

As was briefly mentioned in Chapter 1, two advances that have made parallel 

processing possible have been the development of faster, less expensive interconnection 

networks for connecting processors and memory and the development of standardized 

99 



tools for programming parallel applications. These advancements are discussed in 

general in the sections that follow. However, it is necessary to first provide a brief 

overview of the general principles of parallel processing, beginning with the 

classification method for parallel computers devised by Flynn.[Hynn66] 

A.l.l   Flynn's Taxonomy 

Traditional serial computers are based on the Von Neumann model. This model 

consists of a central processing unit (CPU) and memory, which takes a single sequence of 

instructions and operates on a single sequence of data. In 1966, Michael Flynn 

introduced a classification of parallel computers based on their control mechanism and 

memory configuration. [Flynn66] Under this classification, the Von Neumann model is 

referred to as a single instruction stream, single data stream (SISD) computer. A 

computer in which a single control unit issues instructions to each processing element is 

referred to as a single instruction stream, multiple data stream (SIMD) computer. 

Multiple instruction stream, multiple data stream (MIMD) computers, such as the Intel 

Paragon XP/S, allow each processor to execute a different program independent of the 

other processors. Flynn's model also includes multiple instruction stream, single data 

stream (MISD) computers although in reality there are no commercial examples of these 

computers. MIMD computers are the most popular for modern MPPs and provide the 

greatest flexibility. An illustration of a typical SIMD and MIMD architecture is shown in 

Figure 34. [Kumar94] The two primary communication architectures for MIMD computers 

are discussed in the next section. 

100 



PE: Processing Element 

Global 
control 
unit 

SIMD MIMD 

Figure 34: Layout of a typical SIMD and MIMD architecture 

A.1.2   Shared Memory vs. Message-Passing Architectures 

In order to run a parallel application, there must be some way of communicating 

between processors. MIMD computer architectures are divided into two main groups 

based on their method of interprocessor communication - message-passing and shared- 

memory. Both of these architectures are illustrated in Figure 35. lKumariH] rRassda91] ^ a 

message-passing architecture, each processor has its own memory and communicates via 

an interconnection network (ICN). The processors can only communicate with other 

processors by passing messages. Shared-memory computers, as the name implies, 

provide a common memory for all processors. These processors communicate by 

changing data values in this address space. This research is limited to message-passing 

MIMD systems, which include PoPCs, NOWs, and most modern MPPs. 

101 



Global Maray 1 
Bus 

Original -—-fill 
datax 

Etaisso        tooesa' 

IT 

IH 

DI 

• • • ?j 

o Messagex 

Shaned-Mnrry Architecture 

Intercormection Network 

Message Passing Architecture 

Figure 35: Two Primary Architectures for MIMD Computers 

A.1.3  Interconnection Networks 

A variety of interconnection networks may be used to connect processors and 

memory banks in shared-memory and message-passing computers. These networks can 

be classified into two major categories: static and dynamic. In dynamic networks, the 

path between processors and memory banks is dynamically determined by the use of 

switches and communication links. This type of network is commonly used in shared- 

memory computers. Static networks, on the other hand, are primarily used in message- 

passing architectures. These networks employ direct connections between processors. 

A.1.3.1Dynamic Interconnection Networks 

In order to reduce the number of switches required to connect processors to global 

memory, the global memory is divided into memory banks. In dynamic interconnection 

102 



networks, these memory banks are connected to the processors in one of three primary 

configurations: crossbar switching networks, bus-based networks, and multistage 

interconnection networks. An example of each of these is illustrated in Figure 36. A 

crossbar switch is simply a grid of switching elements, which connects p processors to b 

memory banks. This switch requires p x b switching elements. Since it is unfeasible to 

have fewer memory banks than processors, the complexity of this system increases as the 

number of processors increase as Q(p2). Hence, crossbar switches are unscalable in terms 

of cost. Examples of crossbar switched networks include the Cray Y-MP and Fujitsu 

VPP 500 [Kumar94l 

Processors Memory banks 

\ il h 
A, W 

II kl 
rV 

If l»l i 
m : 
m : 
■    ; 
■ : • 

Globil Mtoioy 

I 

LJT J 
8$i§l Sage 2 Spff n 

Crossbar Switch Bus-Based Network Multistage Interconnection Network 

Figure 36: Dynamic Interconnection Networks 

As with crossbar switches, bus-based networks are simple to construct. 

Processors and global memory are connected by means of a common data bus. Data 

requests and fetches are accomplished over the same bus. Since buses can carry only a 

limited amount of data, the processors may have to wait for memory accesses. This can 

lead to bottlenecks as the number of processors is increased. This problem can be 

partially alleviated by providing each processor with its own local cache memory, thus 

taking advantage of locality of reference. However, this technique may lead to cache 

coherency problems. That is, an outdated value may be read from the global memory by 

103 



one processor before it can be updated from the local cache of a second processor. Even 

with local cache memories, the bus bottleneck can become a problem as the number of 

processors is increased beyond a certain level. Thus, it is uncommon to see these systems 

with more than 64 processors. [Tanenb95] 

Multistage interconnection networks provide a middle ground between the high 

cost of crossbar switches and low performance of bus-based networks. These networks 

consist of multiple stages of interconnection patterns between processors and memory 

banks. At each stage, p inputs are connected to p outputs. The basic switching elements 

allow pass-through and crossover connections as a means of providing paths between all 

processors and memory banks. Using these stages, the required number of switches is 

significantly less than that needed for a crossbar switch, thus reducing costs. However, 

unlike the crossbar switch, multistage networks are blocking networks. That is, access to 

a specific memory bank by one processor may disallow access to another memory bank 

by another processor. An example of one commonly used multistage network, shown in 

Figure 37, is the Omega network, which is used in the IBM SP2. [Kumar94] 

000 
001 

0 10 
01 l 

100 
101 

1 10 
111 

ooo 
001 

010 
01 1 

100 
101 

1 10 
111 

Omega Network 

Figure 37: Omega Interconnection Network (used in IBM SP2) 

104 



A.1.3.2Static Interconnection Networks 

As was mentioned earlier, static networks are commonly used to connect 

message-passing computers. One of the faster, as far as communication speeds, is the 

completely-connected network. As the name implies, each processor is directly 

connected to every other processor in the network. This is the fastest static network 

because each message has to traverse only one communication link between any two 

processors. However, it is also the most expensive in terms of communication links. 

This network is the static equivalent of the dynamic crossbar switching network; 

however, unlike the crossbar, the completely-connected network supports concurrent 

multi-channel communication from a single processor. The completely-connected 

network, as well as, the star, linear array, and ring networks, is illustrated in Figure 38. 

[Kumar94] 

o-#-#-o 
.•-CKM} 

Completely-Connected Star linear Array &Rng 

Figure 38: Static ICNs - Completely-connected, star, linear array, & ring 

In a star-connected network, communication between any two processors must be 

routed through a central processor. This processor can become a bottleneck as 

communication increases. The linear array is the simplest static network. All processors 

105 



are connected to two other processors, except at the ends. When a wraparound is added 

to the end processors, the linear array becomes a ring. Both the linear array and ring 

networks are special cases of a tree network. In a tree network, there is only one path 

between any pair of processors. A tree network may be static or dynamic. A static tree 

has processors at every node, whereas, a dynamic tree has processors only at the leaf 

nodes and switches at all intermediate nodes. Because all communication between 

processors must travel up the tree, communication bottlenecks can occur at the higher 

levels. This can be partially alleviated by increasing the number of communication links 

at higher levels. This type of tree is known as a fat tree. The tree and 2D Mesh networks 

are illustrated in Figure 39. [Kumar94] 

Tree network 2D Mesh w/ wraparound 

Figure 39: Static Interconnection Networks - Tree & 2D Mesh 

A linear array, which has been extended into two dimensions, is known as a two- 

dimensional mesh. With the exception of the boundary processors, each processor in a 

mesh has a direct communication link with four other processors. If the boundary 

processors  have  wraparounds,  then  this  is  true  of all  processors  in  the  mesh. 

106 



Communication in a mesh is accomplished by first sending a message along one 

dimension and then another dimension until it reaches the desired destination. Examples 

of mesh-based computers include the Paragon XP/S and the Cray T3D. 

• 

# 

1-D 2-D 3-D 

Figure 40: Static Interconnection Networks -1-, 2-, & 3-dimensionsal hypercubes 

One of the most versatile static networks is the hypercube, shown in Figure 40. It 

is a "multidimensional mesh of processors with exactly two processors in each 

dimension."[Kumar94] The number of processors in a hypercube is equal to 2d, where d is 

the number of dimensions. A d+1-dimensional hypercube is constructed by linking the 

processors of two d-dimensional hypercubes. The binary representation of the labels of 

each pair of directly-connected processors differ by at most one bit position. This is 

important when distributing data to processors for parallel computation, as it can be used 

to reduce communication overhead. Each processor in a hypercube is connected to d 

other processors and the shortest path between any two processors cannot have more than 

d links. Traditionally a very popular choice for MPPs, hypercubes networks containing 

up to 16,384 CPUs are commercially available, but their popularity has waned in recent 

107 



years.   [Tanenb95]   The nCUBE 2 and Cosmic Cube are examples of some hypercube 

network computers. 

A.1.3.3Cosl/Performance Metrics 

It is important to evaluate the tradeoffs of each of the different static network 

types to determine the "best" choice for a particular application. Some of the criteria, 

which can be used, includes network diameter, arc connectivity, bisection width, and 

cost.[Kumar94] The network diameter is defined as the maximum distance between any two 

processors in a network. Shorter diameters are better, as this reduces communication 

times. As was mentioned earlier, the completely-connected network is the fastest in 

terms of communication speed, with a diameter of one. The linear array is the slowest 

with a diameter of p-1. Arc connectivity is the minimum number of arcs that must be 

removed to break a network into two disconnected networks. Higher connectivity is 

desirable, as it reduces the possibility of resource contention or downtime. The 2-D 

wraparound mesh and hypercube both have good connectivity. A measure of the 

minimum number of links that have to be removed to partition the network into equal 

halves defines the bisection width. Since a hypercube is constructed by connecting two 

sets of p/2 processors, its bisection width is p/2. Lastly, the cost which may be defined as 

the number of communication links required by a network is highest for the completely- 

connected network, p*(p-l)/2, and lowest for the ring, p. A summary of the metrics for 

each of the static networks discussed is presented in Table 18. [Kumar94] 

108 



Network Diameter     Bisection Width      Arc Connectivity     Cost (No. of links) 
Completely-connected 
Star 
Linear array 
Ring 
2-D mesh w/o wraparound 
2-D wraparound mesh 
Hypercube 

1 
2 

p-1 
Lp/2j 

2(p1/2-D 
LP

1/2/2j 
logp 

p2/4 
1 
1 
2 

p"2 

2p1/2 

p/2 

P-1 
1 
1 
2 
2 
4 

lo£P 

p(p-l)/2 
p-1 
p-1 

2(pPp1/2) 
2p 

(P log P)/2 

Table 18: Metrics for Static Interconnection Networks 

109 



Appendix B: AFIT Bimodal Cluster 

The figure below is a diagram of the AFIT Bimodal Cluster (ABC) of NT/Linux 

PCs. The cluster as shown in this diagram has been in existence since Jan 5, 1999. The 

inaugural run of the original four-node cluster was on May 19,1998. 

AFIT Bimodal Cluster 

a/o 5 Jan 99 
Christopher.Bohn@afit.af.mil 

Figure 41: Diagram of AFIT Bimodal Cluster (ABC) 

110 



Appendix C: Analysis of Variance Tables 

Since the ANOVA test requires that the samples tested be normally distributed, a 

"large" number of trials (i.e. 30) were run to ensure a normal distribution. The 

distribution was also checked using the SAS/JMP tool and Microsoft Excel. Results from 

two of these tests are shown in Figure 42. 

Sample distribution 

-2-10 1 2 

Standard Deviations from mean 

Figure 42: Plot of Sample distribution using SAS/JMP and Excel 

The tables that follow were produced using the ANOVA tool in Microsoft Excel 

97. A summary of the analysis is presented at the bottom of each table. The values 

shown in this summary are as follows: 

• Sample - This is the amount of variation between each sample. In these 

tables, the samples are the different platforms. This was the largest source of 

variation for both tables. This tells us that the platform used had the greatest 

effect on the performance of the algorithm. 

Ill 



• Columns - This is the amount of variation between each column. In this case 

the column represents the number of processors and was the second largest 

source of variation as expected. 

• Interaction - This is the amount of variance between a cross section of the 

rows and columns. In other words, this represents all of the other factors that 

cause the performance to vary nonlinearly on each system. These include 

such things as cache memory sizes, network bandwidth, and network latency. 

This value is lower than the "sample" and "columns" value and indicates that 

we can compare these two factors, but need to look at other factors also. 

• Within - This represents the amount of variation within each sample and is 

the lowest source of variation. A high number here represents errors in the 

sample. These could be caused by such things as heavy CPU utilization by 

processes external to the executing program, network glitches, or failed nodes. 

Table 19 presents the results of applying the ANOVA test to data collected from 

all trials of cGRaCCE with the TH513 data set for a problem size of 1000 generations. 

Several observations can be made from the data that validate conclusions made in 

Chapter 5. These observations are: 

1)  The test statistic (F) falls in the critical region (i.e. > F crit) for all sources of 

variation indicating that: 

a)  The mean is different for each platform (i.e. the performance varied from one 

platform to another). 

112 



b) The mean changes as the number of processors is increased (i.e. the performance 

varies with the number of processors). 

c) The interaction means are not equal. This indicates that there are factors (e.g. 

load balance) other than platform and number of processors affecting the 

performance of cGRaCCE. 

2) The largest variance/average ratio is produced by trials with Linux on three and four 

processors. This indicates a problem, which was determined to be caused by a TCP 

bug in the Linux kernel. 

Anova: Two-Factor W 

SUMMARY 
ABC-NT 

it h Rep licat 

1 

ion 
N u m b er of 

2 
P rocesso rs 

3 4 5 Total 

Count 
Sum 
A v e rage 
V aria n ce 

ABC -Linux 

30 
553.27 

1 8.44233 
0.001 225 

30 
365.05 

1 2.1 6833 
0.007263 

30 
338.04 
1 1 .268 

0.001 1 1 3 

30 
261 .583 

8.71 9433 
0.003776 

30 
261 .638 

8.721 267 
0.001 076 

1 50 
1 779.581 
1 1 .86387 
12.78551 

Count 
Sum 
A v e rag e 
Variance 

AFIT NOW 

30 
751 .89 
25.063 

0.006091 

30 
496.35 
1 6.545 

0.003233 

30 
496.45 

1 6.54833 
1 5.231 2 

30 
375.1 1 

1 2.50367 
9.1 25045 

30 
351 .05 

1 1 .701 67 
0.001 987 

150 
2470.85 

1 6.47233 
27.35748 

Count 
Sum 
A v e rag e 
Variance 

IBM   SP2 

30 
1 281 .71 

42.72367 
0.1 34038 

30 
827.28 
27.576 

0.222563 

30 
787.25 

26.241 67 
0.01 1 373 

30 
578.97 
1 9.299 

0.07734 

30 
578.27 

1 9.27567 
0.057963 

1 50 
4053.48 
27.0232 

74.01 243 

Count 
Sum 
Average 
V ariance 

Total 

30 
2575.78 

85.85933 
1 4.51 41 4 

30 
1 561 .1 5 

52.03833 
1 0.54788 

30 
1 444.81 

48.1 6033 
3.479638 

30 
1 096.72 

36.55733 
4.6771 24 

30 
894.8 

29.82667 
2.1 1 2547 

1 50 
7573.26 
50.4884 

385.381 3 

Count 
Sum 
A v e rage 
V ariance 

ANOVA 

1 20 
51 62.65 

43.02208 
699.8266 

1 20 
3249.83 

27.081 92 
243.7639 

1 20 
3066.55 

25.55458 
205.41 43 

1 20 
2312.383 
1 9.26986 
1 1 8.3288 

1 20 
2085.758 
1 7.381 32 
67.5205 

S ource o f V a ria tlo n SS df MS F P -value F crit 
Sam pie 
C olu m n s 
In teractio n 
W ithin 

Total 

1 33572.2 
491 55.57 
23529.1 2 
1 746.282 

208003.2 

3 
4 

1 2 
580 

599 

44524.08 
12288.89 

1960.76 
3.01 083 

1 4787.97 
4081 .563 
651 .2356 

0 
0 
0 

2.620268 
2.387296 
1 .768871 

Table 19: ANOVA values for TH513 data set on all platforms 

113 



Conclusions la, lb, and lc from the previous discussion of the ANOVA results in 

Table 19, also apply to the ANOVA results for cGRaCCE with the checker data set in 

Table 20. Additionally, the interaction value is much lower in proportion to the other 

sources of variance for this data set, indicating that the platform and number of 

processors has a greater effect on performance than other factors such as load balance and 

caching. 

Anova: Two-Factor W 

SUMMARY 
ABC-NT 

ith  Replicat 

1 

io n 
N u mbe r of 

2 
P rocessors 
Total 

Count 
Sum 
A v e rag e 
V a ria n ce 

ABC -Linux 

30 
9664.8 
322.1 6 

1 39.1 308 

30 
4800.7 

1 60.0233 
31 .1 4392 

60 
1 4465.5 

241 .091 7 
6767.1 6 

Count 
Sum 
A v e rag e 
V arian ce 

AFIT NOW 

30 
1 5334.1 

511.1 367 
27482.21 

30 
651 9.6 
21 7.32 

48.0671 7 

60 
21 853.7 

364.2283 
35479.69 

Count 
Sum 
A v e rag e 
V arian ce 

30 
21 782.6 

726.0867 
1 449.481 

30 
1 0663.6 

355.4533 
67.85568 

60 
32446.2 

540.77 
35670.1 5 

IBM   SP2 
Count 
Sum 
A v e rag e 
V a ria n ce 

Total 

30 
21017.1 

700.57 
1431 .092 

30 
1 1 093.8 

369.7933 
589.6331 

60 
321 1 0.9 

535.1 81 7 
2881 0.15 

Count 
Sum 
A v e rage 
Variance 

1 20 
67798.6 

564.9883 
34206.52 

120 
33077.7 

275.6475 
8247.63 

ANOVA 
S ource of V aria tio n SS df MS F P-value F crit 

Sam pie 
C o lu m ns 
In te ractio 
W ith in 

n 

3778229 
5023087 

367895 
90591 9.8 

3 
1 
3 

232 

1 259410 
5023087 

1 22631 .7 
3904.827 

322.5264 
1 286.379 
31 .4051 5 

1 .86E-82 
1 .29E-96 
4.48E-1 7 

2.64351 
3.881 851 

2.64351 

Total 10075130 239 

Table 20: ANOVA values for Checker data set on all platforms 

114 



Bibliography 

[Allen90] Allen A., Probability, Statistics, and Queuing Theory with Computer 
Science Applications. Academic Press, Inc., 1990. 

[Anders95] Anderson T., Culler D., Patterson D., and the NOW Team. "A Case for 
NOW (Networks of Workstations)," IEEE Micro 15:1 (February 1995), 
pp54-64. 

[Baker98] Baker M., "MPI on NT: The Current Status and Performance of the 
Available Environments", EuroPVM/MPI98, Liverpool, UK. 

[Bakerm98] Baker M., Carpenter B., Fox G., Ko S., and Li X., "mpiJava: A Java MPI 
Interface," To be published in Scientific Publishing, 1999. 

[Barr95] Barr S., Golden B., Kelly J., Resende M. and Stewart W., "Designing and 
Reporting  on  Computational  Experiments  with  Heuristic  Methods," 
Journal of Heuristics, 1: 9-32, 1995. 

[Bohn98] Bohn C, "Asymmetrical Load Balancing on a Nonuniform Cluster of 
PCs," MSCE thesis, AFIT/GE/ENG/99M-02, Graduate School of 
Engineering, Air Force Institute of Technology (AETC), Wright-Patterson 
AFB OH, March 1999. 

[Briema84] Breiman L., Friedman J., Olsen R., and Stone C, Classification and 
Regression Trees. Wadsworth International Group, 1984. 

[Chien97] Chien A., et al., "High Performance Virtual Machines (HPVM): Clusters 
with Supercomputing APIs and Performance," Eighth SIAM Conference 
on Parallel Processing for Scientific Computing (PP97), 1997. 

[CH_P4] P4 communication library developed by Argonne National Labs and 
available at: ftp://info.mcs.anl.gov/pub/p4/ 

[El-Rew94] El-Rewini H., Lewis T., and Ali H., Task Scheduling in Parallel and Distributed 
Systems. Englewood Cliffs, New Jersey: PTR Prentice Hall, 1994. 

[ERC] MSU/ERC,    "MPI on Windows NT," http://www.erc.msstate.edu/mpi/ 
mpiNT-download .html 

[Festa98] Festa P., "Windows NT Server Market Grows," http://www.news.com/ 
News/Item/0.4.18542.00.html 

115 



[Flynn66] Flynn, M., "Very High-Speed Computing Systems," Proceedings of the 
IEEE 54:12 (December 1966), ppl901-1909. 

[GEA] Gigabit Ethernet Alliance, "Gigabit Ethernet Standard Formally Ratified; 
Gigabit Ethernet Poised for Widespread Deployment," http://www.giga- 
bit-ethernet.org/news/releases/062998.html 

[Gindha97] Gindhart D., "A Comparative Analysis of Networks of Workstations and 
Massively Parallel Processors for Signal Processing," MSCE thesis, 
AFIT/GCE/ENG/97D-01, Graduate School of Engineering, Air Force 
Institute of Technology (AETC), Wright-Patterson AFB OH, December 
1997. 

[GNUGCC]    GNU GCC Home Page: http://www.gnu.org/software/gcc/gcc.html 

[Goldbe89] Goldberg D., Genetic Algorithms in Search, Optimization, and Machine 
Learning. Reading, MA: Addison-Wesley Publishing Company, Inc., 
1989. 

[Gropp96] Gropp W., Lusk E., Doss N. and Skjellum A., "A High-Performance, 
Portable Implementation of the MPI Message Passing Interface Standard," 
Parallel Computing, Vol. 22, pp. 789-828, 1996. 

[Hebert98] Hebert L., Seefeld W., Skjellum A., Taylor C, Dimitrov R., "MPI for 
Windows NT: Implementations and Experience with the Message Passing 
Interface for Clusters and SMP Environments," Proceedings of the 
PDPTA '98 International Conference, 1998. 

[Henley97] Henley G., et al., "BDM: A multiprotocol Myrinet control program and 
host application programmer interface," Mississippi State University, 
Technical Report #MSSU-EIRS-ERC-97-3, May 1997. 

[HPVM] University of Illinois' High Performance Virtual Machine (HPVM) Home 
Page: http://www-csag.cs.uiuc.edu/projects/hpvm.html 

[IBMSP2]       IBM SP System Home Page: http://www.rs6000.ibm.com/sp.html 

[Joshi97] Joshi K., "Analysis of Data Mining Algorithms," http://www.gl.umbc.edu 
/~kjoshi 1 /data-mine/proj rpt.htm, 1997. 

[Kumar94] Kumar V. et. al, Introduction to Parallel Computing. Redwood City, CA: 
The Benjamin/Cummings Publishing Company, Inc, 1994. 

[Lauria97] Lauria M. and Chien A., "MPI-FM: High Performance MPI on 
Workstation Clusters," Journal of Parallel and Distributed Computing, 
January 1997. 

116 



[Linux] The Linux Documentation Project: http://sunsite.unc.edu/mdw/linux.html 

[LUGR] Linux User Group Registry: http://www.linux.org/users/index. html 

[Marmel98] Marmelstein R. and Lamont G., "GRaCCE: A Genetic Environment for 
Data Mining", Intelligent Engineering Systems Through Artificial Neural 
Networks, vol. 8, pp. 405-412, ASME Press, 1998. 

[Marmel99] Marmelstein, R., "Evolving Compact Decision Rule Sets," Ph.D. 
dissertation, Graduate School of Engineering, Air Force Institute of 
Technology (AETC), Wright-Patterson AFB OH, June 1999 (projected). 

[Marml99] Marmelstein R., Hammack L., and Lamont G., "A Concurrent Approach 
for Evolving Compact Decision Rule Sets," Data Mining and Knowledge 
Discovery: Theory, Tools, and Technology, part of SPIE's Aerosense '99, 
Orlando, FL, April 5-9, 1999. 

[MatLab] MatLab 5.x numerical computation, graphics, visualization, and 
programming language software by The MathWorks, Inc., Home Page: 
http://www.mathworks.com/products/matlab/ 

[Mobash96] Mobasher B., Jain N., Han E., and Srivastaba J, "Web Mining: Pattern 
Discovery from World Wide Web Transactions (1996)," available at 
http://www-users.cs.umn.edu/~mobasher/webminer.html. 

[MPI] The Message Passing Interface (MPI) Standard Home Page: http://www- 
cmcs.anl.gov/Projects/mpi/ 

[MSRC] ASC MSRC Home Page: http://www.asc.hpc.mil/ 

[MST] MPI Software Technology Inc.,  MPFPRO™:  http://www.mpich.com/ 
products/mpi/mpipro/PDS-MPIProNT-Feb 1998-1 .html 

[NIST] NIST  Website  -  Code  fix   for  TCP  performance  drop   in  Linux: 
http://www.multikron.nist.gov/scalable/misc info/Linux TCP .html 

[Nupair94] Nupairoj N. and Ni L., "Performance Evaluation of Some MPI 
Implementations on Workstation Clusters," Proceedings of the 1994 
Scalable Parallel Libraries Conference (SPLC94), October 1994. 

[Pachec97] Pacheco, P.: Parallel Programming With MPI. San Francisco, CA: 
Morgan Kaufmann, 1997. 

[Pakin95] Pakin S., Lauria M., and Chien A., "High Performance messaging on 
workstations: Illinois Fast Messages (FM) for Myrinet," Proceedings of 
Supercomputing '95, San Diego, CA, December 1995. 

117 



[Pallas] Pallas MPI Benchmarks: http://www.pallas.de/pages/pmbd.htm 

[PaTENT] Genias Software, PaTENT MPI 4.0 Home Page: http://gimli.genias.de/ 
products/patent/index .html 

[PC4.5] Parallel C4.5 Home Page: http://merv.cs.nvu.edu: 8001/~binli/ pc4.5/ 

[PGCC] Pentium Compiler Group FAQ: http://goof.com/pcg/pgcc-faq.html 

[Platform] Platform Computing's commercial Load Sharing Facility Software for 
HPVM front-end available at http://www.platform.com/ 

[PMSI] PMSI   paper   on   "Data   Mining,"   http://www.geocites.com/CapeCanaveral/ 
Launchpad/7651/dminita.htm 

[Provant]        Provantage Computer Products Home Page: http://www.provantage.com/ 

[Quinn94] Quinn, M., Parallel Computing: Theory and Practice. San Francisco, CA: 
McGraw-Hill, Inc., 1994. 

[Quinla93] Quinlan J.: C4.5 - Programs for Machine Learning. San Francisco, CA: 
Morgan Kaufmann, 1993. 

[Ragsda91] Ragsdale S., Parallel Programming. New York, NY: McGraw-Hill, Inc., 
1991. 

[RedHat] Red Hat Software, Inc. Home Page: http://www.redhat.com/ 

[Ridge97] Ridge D., Becker D., Merkey P. and Sterling T., "Beowulf: Harnessing the 
Power of Parallelism in a Pile-of-PCs," Proceedings, IEEE Aerospace, 
1997. 

[Sharaz95] Shirazi B. and Hurson A., Parallelism Management Scheduling and Load 
Balancing. San Francisco, CA: PTR Prentice Hall, 1995. 

[SP2MPI] Parallel Environment v2.3 (IBM SP2's proprietary MPI implementation) 
Home Page: http://www.austin.ibm.com/software/sp products/pe.html 

[SPEC] The Standard Performance Evaluation Corporation (SPEC) Home Page: 
http://www.spec.org/ 

[Sterli98] Sterling T., "Beowulf-class Clustered Computing: Harnessing the Power 
of Parallelism in a Pile of PCs," Proceedings of the Genetic Programming 
98 Conference, April 1998. 

[Tanenb95] Tanenbaum A., Distributed Operating Systems. Upper Saddle River, NJ: 
Prentice Hall, Inc., 1995. 

118 



[Timmer97] Timmerman M., "Windows NT Real-Time Extensions: An Overview," 
Real-Time Magazine, Quarter 2, 1997. Available at http://www.realtime- 
info.be/encvc/magazine/97q2/winntext.htm 

[UCLA] UCLA: "Classification and Regression Trees (CART)," http://neurosim.medsch. 
ucla.edu/BMML/Stitt/new.htdocs/cart.htoil 

[USAFFS95] USAF Fact Sheet 95-20, "Information Warfare and its Importance," 
http://www.af.mil/news/factsheets/Information_Warfare.html 

[VAST/f90] VAST/f90 - a high performance Fortran compiler from Pacific-Sierra 
Research available at: http://www.psrv.com/lnxf90.html 

[vonEic92] von Eicken T., et al., "Active Messages: A mechanism for integrated 
communication and computation," Proceedings of the 19th ISCA, May 
1992, pp. 256-266. 

[Weiss91] Weiss S. and Kulikowxki C, Computer Systems That Learn. San Francisco, 
CA: Morgan Kaufmann Publishers, Inc, 1991. 

[Weiss98] Weiss S. and Indurkhya N., Predictive Data Mining. San Francisco, CA: 
Morgan Kaufmann Publishers, Inc, 1998. 

[White97] White R, "Object Classification in Astronomical Images," Statistical 
Challenges in Modern Astronomy II, pp. 135-148, 1997. 

[Whitle94] Whitley D., "A Genetic Algorithm Tutorial," Statistics and Computing, 
vol. 4, pp. 65-85,1994. 

[Windows] Microsoft Windows Home Page: http://www.microsoft.com/windows/ 
default.asp 

[Yang90] Yang T. and Gerasoulis A., "A Fast Static Scheduling Algorithm for 
DAG's on an Unbounded Number of Processors," Tech report, Rutgers 
University, 1990. 

[Zelkow98] Zelkowitz, M. and Wallace, D., "Experimental Models for Validating 
Technology," Computer, May 1998. 

119 



VITA 

Captain Lonnie Pafford Hammack was bom on June 6, 1962 in Cuthbert, 

Georgia. He graduated from Terrell County High School in 1980. In September 1983, 

he enlisted in the United States Air Force and was assigned to Beale AFB, CA, where he 

worked as an aircraft engine technician. In March 1988, he separated from the Air Force 

to continue his education. From August 1989 to April 1993, he served as an avionics 

specialist with the Air Force Reserves at Robins AFB, GA He received a Bachelor of 

Science in Computer Science from Albany State College in 1992 and was commissioned 

a second lieutenant in the Air Force on July 28, 1993. Lonnie's first assignment as a 

commissioned officer was to the Air Force Pentagon Communications Agency in 

Washington, D.C., where he worked as a system administrator and network engineer. 

Following his tour at the Pentagon, he was assigned as a Master's student to the Air 

Force Institute of Technology. 

120 


